共查询到18条相似文献,搜索用时 15 毫秒
1.
Plasma sprayed nanostructured GdPO4 thermal barrier coatings: Preparation microstructure and CMAS corrosion resistance 下载免费PDF全文
Lei Guo Mingzhu Li Yuxian Cheng Chenglong Zhang Sixian He Yuchen Zhang Fuxing Ye 《Journal of the American Ceramic Society》2017,100(9):4209-4218
Nanostructured GdPO4 thermal barrier coatings (TBCs) were prepared by air plasma spraying, and their phase structure evolution and microstructure variation due to calcium–magnesium–alumina–silicate (CMAS) attack have been investigated. The chemical composition of the coating is close to that of the agglomerated particles used for thermal spraying. Nanozones with porous structure are embedded in the coating microstructure, with a percentage of ~30%. CMAS corrosion tests indicated that nanostructured GdPO4 coating is highly resistant to penetration by molten CMAS at 1250°C. Within 1 hour heat treatment duration, a continuous dense reaction layer forms on the coating surface, which are composed of P–Si apatite based on Ca2+xGd8?x(PO4)x(SiO4)6?xO2, anorthite and spinel phases. This layer provides effective prevention against CMAS further infiltration into the coating. Prolonged heat treatment densifies the reaction layer but does not change its phase composition. 相似文献
2.
Gustavo Costa Bryan J. Harder Valerie L. Wiesner Dongming Zhu Narottam Bansal Kang N. Lee Nathan S. Jacobson Denys Kapush Sergey V. Ushakov Alexandra Navrotsky 《Journal of the American Ceramic Society》2019,102(5):2948-2964
The thermodynamic stability of ceramic coatings with respect to their reaction products is crucial to develop more durable coating materials for gas-turbine engines. Here, we report direct measurements using high-temperature solution calorimetry of the enthalpies of reaction between some relevant ceramic coatings and a corrosive molten silicate. We also report the enthalpy of mixing between the coatings and molten silicate after combining the results measured by high-temperature solution calorimetry with enthalpies of fusion measured by drop-and-catch calorimetry and differential thermal analysis. The enthalpies of solution of selected silicate and zirconia-based coatings and apatite reaction products are moderately positive except for 7YSZ, yttria-stabilized zirconia. Apatite formation is only favorable over coating dissolution in terms of enthalpy for 7YSZ. The enthalpies of mixing between the coatings and the molten silicate are less exothermic for Yb2Si2O7 and CaYb4Si3O13 than for 7YSZ, indicating lower energetic stability of the latter against molten silicate corrosion. The thermochemical results explain and support the very corrosive nature of CMAS melts in contact with ceramic coatings. 相似文献
3.
Sintering‐induced delamination of thermal barrier coatings by gradient thermal cyclic test 下载免费PDF全文
Bo Cheng Yu‐Ming Zhang Ning Yang Meng Zhang Lin Chen Guan‐Jun Yang Cheng‐Xin Li Chang‐Jiu Li 《Journal of the American Ceramic Society》2017,100(5):1820-1830
Lifetime is crucial to the application of advanced thermal barrier coatings (TBCs), and proper lifetime evaluation methods should be developed to predict the service lifetime of TBCs precisely and efficiently. In this study, plasma‐sprayed YSZ TBCs were subjected to gradient thermal cyclic tests under different surface temperatures, with the aim of elucidating the correlation between the coating surface temperature and the thermal cyclic lifetime. Results showed that the thermal cyclic lifetime of TBCs decreased with the increasing of surface temperatures. However, the failure modes of these TBCs subjected to thermal cyclic tests were irrespective of different surface/BC temperatures, that is, sintering‐induced delamination of the top coat. The thickness of thermally grown oxide (TGO) was significantly less than the critical TGO thickness to result in the failure of TBCs through the delamination of top coat. There was no phase transformation of the top coat after failure. In contrast, in the case concerning the top coat surface of the failure specimens, the elastic modulus and microhardness increased to a comparable level due to sintering despite of the various thermal cyclic conditions. Consequently, it is conclusive that the failure of TBCs subjected to gradient thermal cyclic test was primarily induced by sintering during high‐temperature exposure. A delamination model with multilayer splats was developed to assist in understanding the failure mechanism of TBCs through sintering‐induced delamination of the top coat. Based on the above‐described results, this study should aid in facilitating the lifetime evaluation of the TBCs, which are on active service at relatively lower temperatures, by an accelerated thermal cyclic test at higher temperatures in laboratory conditions. 相似文献
4.
《Journal of the European Ceramic Society》2023,43(5):2164-2174
Thermal barrier coatings (TBCs) are widely used as insulating layers to protect the underlying metallic structure of gas turbine blades. However, the thermal cycling performance of TBCs is affected by their complex working environments, which may shorten their service life. Previous studies have shown that preparing a mesh structure in the bonding layer can relieve thermal stress and improve the bonding strength, thereby prolonging the service life of TBCs. In this paper, a micromesh structure was prepared on the surface of the bonding layer via wet etching. The microstructure and failure mechanism of the micromesh TBCs after CMAS (CaO-MgO-Al2O3-SiO2) thermal erosion were investigated. Numerical simulation was combined with thermal shock experiments to study the stress distribution of the micromesh-structured TBCs. The results showed that the circular convex structure can effectively improve the CMAS corrosion resistance and thermal shock resistance of TBCs. 相似文献
5.
Hongying Dong Lu Liu Shaokun Wang Yingwei Qi Haolei Qi Qing Geng Yingchai Shuang Wen Ma 《Journal of the American Ceramic Society》2023,106(9):5420-5430
At high temperatures in gas turbines, traditional yttria stabilized zirconia materials fail prematurely owing to CMAS (calcium–magnesium–alumina–silicate) corrosion. Thus, new materials need to be developed urgently. In this study, LaPO4 powder was synthesized by chemical coprecipitation and heat treatment using lanthanum nitrate (La(NO3)3∙6H2O) and ammonium dihydrogen phosphate (NH4H2PO4) as starting materials, and LaPO4 bulk was prepared by spark plasma sintering. The surface of the LaPO4 bulk was coated with CMAS (CaO–MgO–Al2O3–SiO2) powder, and the CMAS interaction with the LaPO4 bulk at different temperatures was investigated. The phase and microstructure of the LaPO4 powder and bulk, as well as the CMAS corrosion products, were characterized using X-ray diffraction and scanning electron microscope. The superior CMAS resistance of the LaPO4 bulk was attributed to the low wettability of LaPO4 by the CMAS melt and the development of dense layers of new corrosion products, which effectively protected the LaPO4 bulk from CMAS infiltration. 相似文献
6.
Jesus Gonzalez-Julian Georg Mauer Doris Sebold Daniel E. Mack Robert Vassen 《Journal of the American Ceramic Society》2020,103(4):2362-2375
Cr2AlC layers with thickness up to 100 µm were deposited by high-velocity-atmospheric plasma spray (HV-APS) on Inconel 738 substrates to analyze the potential of MAX phases as bond coat in thermal barrier coating systems (TBCs). The deposited Cr2AlC layers showed high purity with theoretical densities up to 93%, although some secondary phases were detected after the deposition process. On top of this MAX phase layer, a porous yttria-stabilized zirconia (YSZ) was deposited by atmospheric plasma spraying. The system was tested under realistic thermal loading conditions using a burner rig facility, achieving surface and substrate temperatures of 1400°C and 1050°C, respectively. The system failed after 745 cycles mainly for three reasons: (i) open porosity of the bond coat layer, (ii) oxidation of secondary phases, and (iii) inter-diffusion. Nevertheless, these results show a high potential of Cr2AlC and other Al-based MAX phases as bond coat material for high-temperature applications. Furthermore, future challenges to transfer MAX phases as eventual bond coat or protective layer are discussed. 相似文献
7.
《Ceramics International》2016,42(9):11118-11125
Nanostructured 4SYSZ (scandia (3.5 mol%) yttria (0.5 mol%) stabilized zirconia) and 5.5 SYSZ (5 mol% scandia and 0.5 mol% yttria) thermal barrier coatings (TBCs) were deposited on nickel-based superalloy using NiCrAlY as the bond coat by plasma spraying process. The thermal shock response of both as-sprayed TBCs was investigated at 1000 °C. Experimental results indicated that the nanostructured 5.5SYSZ TBCs have better thermal shock performance in contrast to 4SYSZ TBCs due to their higher tetragonal phase content and higher fracture toughness of this coating 相似文献
8.
《Journal of the European Ceramic Society》2022,42(2):649-657
The corrosion resistance to calcium-magnesium-alumino-silicates (CMAS) is critically important for the thermal barrier coatings (TBCs). High-entropy zirconate (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 (HEZ) ceramics with low thermal conductivity, high coefficient of thermal expansion and good durability to thermal shock is expected to be a good candidate for the next-generation TBCs. In this work, the CMAS corrosion of HEZ at 1300°C was firstly investigated and compared with the well-studied La2Zr2O7 (LZ). It is found that the HEZ ceramics showed a graceful behavior to CMAS corrosion, obviously much better than the LZ ceramics. The HEZ suffered from CMAS corrosion only through dissolution and re-precipitation, while additional grain boundary corrosion existed in the LZ system. The precipitated high-entropy apatite showed fine-grained structure, resulting in a reaction layer without cracks. This study reveals that HEZ is a promising candidate for TBCs with extreme resistance to CMAS corrosion. 相似文献
9.
Resistance of 2ZrO2·Y2O3 top coat in thermal/environmental barrier coatings to calcia‐magnesia‐aluminosilicate attack at 1500°C 下载免费PDF全文
Amanda R. Krause Hector F. Garces Christine E. Herrmann Nitin P. Padture 《Journal of the American Ceramic Society》2017,100(7):3175-3187
Internally cooled, hollow SiC‐based ceramic matrix composites (CMCs) components that may replace metallic components in the hot section of future high‐efficiency gas‐turbine engines will require multilayered thermal/environmental barrier coatings (T/EBCs) for insulation and protection. In the T/EBC system, the thermally insulating outermost (top coat) ceramic layer must also provide resistance to attack by molten calcia‐magnesia‐aluminosilicate (CMAS) deposits. The interactions between a potential candidate for top coat made of air‐plasma‐sprayed (APS) 2ZrO2·Y2O3 solid‐solution (ss) ceramic and two different CMASs (sand and fly ash) are investigated at a relevant high temperature of 1500°C. APS 2ZrO2·Y2O3(ss) top coat was found to resist CMAS penetration at 1500°C for 24 hours via reaction products that block CMAS penetration pathways. In situ X‐ray diffraction (XRD) studies have identified the main reaction product to be an Ca‐Y‐Si apatite, and have helped elucidate the proposed mechanism for CMAS attack mitigation. Ex situ electron microscopy and analytical spectroscopy studies have identified the advantageous characteristics of the reaction products in helping the CMAS attack mitigation in the APS 2ZrO2·Y2O3(ss) coating at 1500°C. Finally, the Y3+ solubility limit and transport behavior are identified as potential comparative tools for assessing the CMAS resistance ability of top‐coat ceramics. 相似文献
10.
《Ceramics International》2016,42(10):12172-12179
Two kinds of segmentation-crack structured YSZ thick thermal barrier coatings (TTBCs) were deposited by suspension plasma spraying (SPS) and atmospheric plasma spraying (APS) with nano-based suspension and agglomerated particles, respectively. The phase composition, microstructure evolution and failure behavior of both TBCs before and after thermal shock tests were systematically investigated. Microstructure of the APS coating exhibits typical segmentation-crack structure in the through-thickness direction, similar with the SPS coating. The densities of segmentation-crack in APS and SPS coatings were about 3 cracks mm−1 and 4 cracks mm−1, respectively. The microstructure observation also showed that the columnar and equiaxed grains existed in the SPS coating. As for the thermal shock test, the spallation life of the APS TTBCs was 146 cycles, close to that of the SPS TTBCs (166 cycles). Failure of the APS coating is due to the spallation of fringe segments and splats. 相似文献
11.
《Journal of the European Ceramic Society》2020,40(15):5683-5691
Understanding self-crystallization characteristics of calcium-magnesium-alumina- silicate (CMAS) glass is of great significance for seeking for solution to its corrosion to thermal barrier coatings (TBCs). Here, we design a series of experiments to investigate the relationship between CMAS self-crystallization behavior and cooling/heating rates and dwell temperature, and emphasize the potential influence of self-crystallization on CMAS corrosion behavior to TBCs. With the cooling rate decreasing, crystalline phases formed in a sequence of diopside, wollastonite and anorthite, and the thickness of the crystalline layer increased. During the heating process, diopside and melilite phases formed when the temperature was lower than 1050 °C; while at higher temperatures, melilite transformed to anorthite and wollastonite, independent on the heating rate. Although self-crystallization can slow molten CMAS penetration, the function on protecting TBCs from damage is limited, and other strategies alleviating CMAS corrosion are necessitated to be developed. 相似文献
12.
Hot corrosion behavior of double ceramic layered CaZrO3/Yttria‐stabilized zirconia coatings 下载免费PDF全文
Naveed Ejaz Liaqat Ali Furqan Ahmed Gul Awan Khalid Mehmood Ghauri Aamer Nusair 《International Journal of Applied Ceramic Technology》2018,15(1):53-62
A novel double ceramic layered (DCL) CaZrO3/Yttria‐stabilized zirconia (YSZ) thermal barrier coatings (TBCs) was designed for improved service life against sulfate vanadate hot corrosion as compared with that of YSZ single layered coating. The hot corrosion behavior of DCL CaZrO3/YSZ coatings was studied at 950°C after dry spreading 50%Na2SO4+50%V2O5 mixture onto a coated surface. The CaZrO3 as the topmost layer in DCL CaZrO3/YSZ coatings, served as a sacrificial layer during sulfate vanadate hot corrosion protecting the underneath YSZ coating. The corrosion reactions in this case were sluggish due to the initial formation of low melting point meta‐calcium vanadate (CaV2O6) that isothermally transformed to higher melting point calcium vanadates having higher calcia (CaO) content. The corrosion reaction products sealed the top surface, impeding the oxygen movement and eventually retarded the thermally grown oxide (TGO) growth. The sulfate vanadate hot corrosion life of the DCL CaZrO3/YSZ coatings was observed to be more than double as compared with single ceramic layered YSZ coatings. 相似文献
13.
Dapeng Zhou Daniel Emil Mack Emine Bakan Georg Mauer Doris Sebold Olivier Guillon Robert Vaßen 《Journal of the American Ceramic Society》2020,103(3):2048-2061
Gadolinium zirconate (Gd2Zr2O7, GZO) as an advanced thermal barrier coating (TBC) material, has lower thermal conductivity, better phase stability, sintering resistance, and calcium-magnesium-alumino-silicates (CMAS) attack resistance than yttria-stabilized zirconia (YSZ, 6-8 wt%) at temperatures above 1200°C. However, the drawbacks of GZO, such as the low fracture toughness and the formation of deleterious interphases with thermally grown alumina have to be considered for the application as TBC. Using atmospheric plasma spraying (APS) and suspension plasma spraying (SPS), double-layered YSZ/GZO TBCs, and triple-layered YSZ/GZO TBCs were manufactured. In thermal cycling tests, both multilayered TBCs showed a significant longer lifetime than conventional single-layered APS YSZ TBCs. The failure mechanism of TBCs in thermal cycling test was investigated. In addition, the CMAS attack resistance of both TBCs was also investigated in a modified burner rig facility. The triple-layered TBCs had an extremely long lifetime under CMAS attack. The failure mechanism of TBCs under CMAS attack and the CMAS infiltration mechanism were investigated and discussed. 相似文献
14.
A nano‐composite coating was formed using nano‐ZnO as pigment in different concentrations, to a specially developed alkyd‐based waterborne coating. The nano‐ZnO modified composite coatings were applied on mild steel substrate by dipping. The dispersion of nano‐ZnO particles in coating system was investigated by scanning electron microscopic and atomic force microscopic techniques. The effect of the addition of these nano‐pigments on the electrochemical behavior of the coating was investigated in 3.5% NaCl solution, using electrochemical impedance spectroscopy. Coating modified with higher concentration of nano‐ZnO particles showed comparatively better performance as was evident from the pore resistance (Rpo) and coating capacitance (Cc) values after 30 days of exposure. In general, the study showed an improvement in the corrosion resistance of the nano‐particle modified coatings as compared with the neat coating, confirming the positive effect of nano‐particle addition in coatings. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
15.
Lucas A. Herweyer Elizabeth J. Opila 《Journal of the American Ceramic Society》2021,104(12):6496-6507
The high-temperature interaction between ~2.5 mg/cm2 of Na2SO4 and an atmospheric plasma sprayed (APS) Yb2Si2O7 topcoat–Si bond coat system on SiC CMC substrates was studied for times up to 240 h at 1000°C–1316°C in a 0.1% SO2–O2 gaseous environment. Yb2Si2O7 reacted with Na2SO4 to form Yb2SiO5 and an intergranular amorphous Na-silicate phase. Below 1200°C, the reaction was sluggish, needing days to cause morphological changes to the “splat microstructure” associated with APS coatings. The reaction was rapid at 1200°C and above, needing only a few hours for the entire topcoat to transform into a granulated microstructure consisting of Yb2SiO5 and Yb2Si2O7 phases. Na2SO4 deposits infiltrated the Yb2Si2O7 topcoat and transformed into an amorphous Na-silicate in less than 1 h at all exposure temperatures. Quantitative assessment of the Yb2SiO5 area fraction in the topcoat showed a linear decrease over time at 1316°C, attributed to reaction with the SiO2 thermally grown oxide (TGO) formed on the Si bond coat and rapid transport through the interpenetrating amorphous Na-silicate grain boundary phase. It was predicted that nearly 2 weeks is needed for complete removal of Yb2SiO5 from the topcoat at 1316°C for a single applied loading of Na2SO4. 相似文献
16.
Markus Wolf Daniel Emil Mack Olivier Guillon Robert Vaßen 《Journal of the American Ceramic Society》2020,103(12):7056-7071
Rare earth silicate environmental barrier coatings (EBCs) are state of the art for protecting SiC ceramic matrix composites (CMCs) against corrosive media. The interaction of four pure rare earth silicate EBC materials Yb2SiO5, Yb2Si2O7, Y2SiO5, Y2Si2O7 and three ytterbium silicate mixtures with molten calcium-magnesium-aluminosilicate (CMAS) were studied at high temperature (1400°C). The samples were characterized by SEM and XRD in order to evaluate the recession of the different materials after a reaction time of 8 hours. Additionally, the coefficient of thermal expansion (CTE) was determined to evaluate the suitability of Yb silicate mixtures as EBC materials for SiC CMCs. Results show that monosilicates exhibit a lower recession in contact with CMAS than their disilicate counterparts. The recession of the ytterbium silicates is far lower than the recession of the yttrium silicates under CMAS attack. Investigation of the ytterbium silicate mixtures exposes their superior resistance to CMAS, which is even higher than the resistance of the pure monosilicate. Also their decreased CTE suggests they will display better performance than the pure monosilicate. 相似文献
17.
A comprehensive sintering mechanism for thermal barrier coatings‐Part III: Substrate constraint effect on healing of 2D pores 下载免费PDF全文
Guangrong Li Guanjun Yang Chengxin Li Changjiu Li 《Journal of the American Ceramic Society》2018,101(8):3636-3648
During thermal exposure, the sintering of the plasma‐sprayed thermal barrier coatings (PS‐TBCs) is highly dependent on the healing of the two‐dimensional (2D) pores (including the inter‐splat pores and the intra‐splat cracks), as reported in the previous Part‐I and Part‐II based on free‐standing coatings. As a further study, this part aims to reveal the effect of substrate constraint on healing behavior of the 2D pores, since the coatings are actually bonded to superalloy substrate during real service. The healing of the 2D pores was quantitatively examined, and the multiscale mechanical properties were determined during the overall thermal exposure. In addition, a structure model was used to quantitatively correlate the evolution of 2D pores with mechanical property. The results of experiments and model prediction show that, different from the two‐stage evolutionary trends in free‐standing coatings, the overall evolution trends of microstructure and property can be divided into 3 stages affected by the substrate constraint. Moreover, the anisotropic healing of the 2D pores reported in free‐standing coatings was enhanced significantly due to the additional stress in coatings resulting from constraint of substrate. This means that the healing of inter‐splat pores became faster and severer. Given that, an outlook on structural tailoring to retard the performance degradation of TBCs was proposed. 相似文献
18.
In this study, effect of duration of ultrasonication process on structural characteristics and barrier properties of solvent‐free castor oil‐based polyurethane (PU)/organically modified montmorillonite (OMMT) nanocomposites was investigated. A series of PU/OMMT composites were synthesized by in situ polymerization technique through an ultrasonication‐assisted process at various processing durations. Effect of ultrasonication duration on de‐agglomeration of clay stacks in castor oil dispersions was evaluated by optical microscopy, sedimentation test, and viscosity measurement. Wide angle X‐ray diffraction and Fourier‐transform infrared spectroscopy were employed to investigate the effect of processing time on degree of delamination of clay platelets and interfacial strength between clay layers and PU matrix. Also, surface morphology of the nanocomposites was analyzed by atomic force microscopy. The results showed that by increasing the ultrasonication time up to 60 min, the size of clay agglomerates decreased and the interlayer spacing of clay platelets increased. To evaluate the effect of ultrasonication duration on transport properties of the PU/OMMT composites, diffusion coefficient and permeability were determined through water uptake test. Electrochemical impedance spectroscopy was carried out to analyze the barrier properties and to evaluate the corrosion performance of these composite coatings on carbon steel panels. It was found that by increasing sonication time, the barrier property of nanocomposites against diffusion of water molecules improved, which is due to further separation of clay platelets, enhancement of the traveling pathways for water molecules and improvement of interactions between the two components. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献