首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly ordered, conical-pore anodic alumina (AAO) membranes with interpore distance (D c ) between ca. 530 and 620 nm and thickness ranging between 2.4 and 7.8 μm, were produced. In the fabrication process aluminum surface was first pre-patterned by the anodization in etidronic acid solution. Then, the regular arrays of Al concaves were used as nucleation sites to grow AAO during the second anodization, which was carried out in highly concentrated citric acid solution (20 wt%) and at relatively high temperature (33–35?°C). The conical pore shape was engineered by a multistep process combining anodization in the citric acid electrolyte and the subsequent chemical pore broadening in phosphoric acid solution. The morphological analyses has revealed that the geometrical parameters of the Al concaves were successfully transferred to the AAO membranes. Furthermore, FTIR spectra analysis confirmed that the electrolyte species, such as phosphonate and citric ions, are being embedded into the AAO framework during the anodization. The graded-index structure formed in AAO can be used for a production of antireflective coatings operating in a broad spectral range.  相似文献   

2.
Anodic aluminum oxide (AAO) membranes with a highly ordered nanopore arrangement typically serve as ideal templates for the formation of various nanostructured materials. A typical procedure of the template preparation is based on a two-step self-organized anodization of aluminum carried out at the temperature of about 1-3 °C. In the current study, AAO templates were fabricated in 0.3 M oxalic acid under the anodizing potential range of 30-65 V at a relatively high electrolyte temperature ranging from 20 to 30 °C. Due to a high rate of porous oxide growth, about 5-10-fold higher than in low-temperature anodizing, the process of the template fabrication can be shorten significantly. Similarly to the low-temperature anodization, the best hexagonal pore arrangement is observed for samples anodized at 40 V. With a prolonged duration of the first anodizing step the order degree of triangular nanoporous lattice, observed after the second anodization, improves considerably. The effects of the anodizing potential and the process duration on the structural features of porous anodic alumina such as: pore diameter (Dp), interpore distance (Dc), porosity (P), pore density (n) and anodizing ratio (BU) were investigated in details at various temperatures. The obtained results were compared with theoretical predictions and data reported in the literature.  相似文献   

3.
Highly ordered pore array in anodic aluminum oxide was fabricated by anodizing pure aluminum. The order of a pore array was affected by anodizing voltage, electrolyte temperature, and first anodizing time. A regular pore array with mean diameter of 24 nm and interpore distance of 109 nm could be formed by two-step anodization at 40 V., oxalic acid concentration of 0.3 M and electrolyte temperature of 15 ‡C. The measured interpore distance showed linearity with anodizing voltage. The diameter of pores was adjusted by pore widening treatment in a 5 wt% phosphoric acid solution at 30 ‡C after two step anodization. The mechanism of self-arrangement of pores could be explained by the repulsive interaction between the pore walls.  相似文献   

4.
The nanopore arrays were fabricated by two-step self-organized anodization of aluminum carried out in 0.3 M oxalic acid at the temperature of 20 °C. This relatively high temperature shortens significantly the anodizing time and allows to fabricate quickly thick through-hole membranes without the additional operating cost of a cooling circuit. The structural features of anodic porous alumina such as pore diameter, interpore distance, porosity, pore density and pore circularity were investigated at various durations of pore opening/widening process carried out in 5% H3PO4. An excellent agreement of AAO structural features measured in FE-SEM images of the studied samples with results from software calculations was observed. The pore shape can be monitored qualitatively by fast Fourier transforms (FFTs) and quantitatively by calculation the percentage of pore circularity. Additionally, the regularity of the hexagonal arrangement of nanopores in through-hole AAO membranes was compared for various opening/widening time ranging from 40 to 100 min. It was shown that three-dimensional (3D) representations of FE-SEM images and their surface-height distribution diagrams provide interesting information about the surface roughness evolution during the pore opening/widening process. A template-assisted fabrication of Ag and Sn nanowire arrays by electrochemical deposition into the pores of the prepared AAO templates was also successfully demonstrated.  相似文献   

5.
A study of reflective interference spectroscopy [RIfS] properties of nanoporous anodic aluminium oxide [AAO] with the aim to develop a reliable substrate for label-free optical biosensing is presented. The influence of structural parameters of AAO including pore diameters, inter-pore distance, pore length, and surface modification by deposition of Au, Ag, Cr, Pt, Ni, and TiO2 on the RIfS signal (Fabry-Perot fringe) was explored. AAO with controlled pore dimensions was prepared by electrochemical anodization of aluminium using 0.3 M oxalic acid at different voltages (30 to 70 V) and anodization times (10 to 60 min). Results show the strong influence of pore structures and surface modifications on the interference signal and indicate the importance of optimisation of AAO pore structures for RIfS sensing. The pore length/pore diameter aspect ratio of AAO was identified as a suitable parameter to tune interferometric properties of AAO. Finally, the application of AAO with optimised pore structures for sensing of a surface binding reaction of alkanethiols (mercaptoundecanoic acid) on gold surface is demonstrated.  相似文献   

6.
Ordered arrays of anodic alumina nanopores with uniform pore diameters have been fabricated by self-organized anodization of aluminum. However, gradient or alternating diameter nanopore arrays with designed interpore distances have not been possible. In this study, focused ion beam lithography is used to fabricate hexagonally arranged concaves with different diameters in designed arrangements on aluminum surfaces. The patterns are then used to guide the further growth of alumina nanopores in the subsequent oxalic acid anodization. Gradient and alternating nanopore arrangements have been attained by FIB patterning guided oxalic acid anodization. The fundamental understanding of the process is discussed.  相似文献   

7.
Focused ion beam (FIB) patterning in combination with anodization has shown great promise in creating unique pore patterns. This work is aimed to understand the effect of the FIB patterned sites in guiding anodized pore development. Highly ordered porous anodic alumina has been created with the guidance of FIB created patterns on electropolished aluminum followed by oxalic acid anodization. Shallow concaves created by the FIB with only 1.5 nm depth can effectively guide the growth of ordered nanopore patterns. With the guidance of the FIB pattern, the anodization rate is much faster and the nanopore growth direction bends at the boundary of the FIB patterned and un-patterned regions. FIB patterning also enlarges the anodization window; ordered nanopore arrays with 150 nm interpore distances can be produced under an applied potential from 50 V to 80 V. The fundamental understanding of these unique processes is discussed.  相似文献   

8.
铝阳极氧化多孔膜的制备和应用研究   总被引:1,自引:0,他引:1  
介绍了以高纯铝为原料采用二次阳极氧化技术制备铝阳极氧化多孔膜的工艺条件,并对以其作为功能膜进行模板组装方面的应用作了研究。  相似文献   

9.
Anodic aluminum oxide (AAO) membranes with modulated pore diameter were synthesized by pulse anodization in 0.3 M sulfuric acid at 1 °C. For AAO growth, a typical combination of alternating mild anodizing (MA) and hard anodizing (HA) pulses with applied potential pulses of 25 V and 35 V was applied. The control of the duration of HA pulses will provide an interesting way to tune the shape of pores and the structure of AAO channels. It was found that a non-uniform length of HA segments in cross section of AAO is usually observed when the HA pulse duration is shorter than 1.2 s. The pulse anodization performed with longer HA pulses leads to the formation of AAO templates with periodically modulated pore diameter and nearly uniform length of segments. Various diameter-modulated metallic nanowires (Au, Ag, Ni and Ag–Au) were fabricated by electrodeposition in the pores of anodic alumina membranes. A typical average nanowire diameter was about 30 nm and 48 nm for MA and HA nanowire segments, respectively. After a successful dealloying silver from Ag–Au nanowires, porous ultrathin Au nanowires were obtained.  相似文献   

10.
Nanoporous anodic aluminum oxide (AAO) can be created with pores that self-assemble into ordered configurations. For more than 60 years it has been assumed that field-assisted dissolution of the oxide leads to pore formation, despite a lack of direct experimental evidence that confirms this expectation. In this work, we have developed a method for separately studying the onset of field induced growth instabilities and the instability that leads to pore formation. We find that field-assisted dissolution models are consistent with the observed dependence of the Al2O3 dissolution rate on the electric field, as well as the existence of a critical field for pore initiation. However, we further show that the well-known porous structure, which has a significantly different length scale, does not result from a field-induced instability, but is instead the result of a mechanical instability with forced plastic deformation and flow of the oxide during further anodization. Through interpretation of these results we develop a generalized mechanism for pore formation in AAO, and by analogy, for pore formation in other anodization processes.  相似文献   

11.
Conventional anodic aluminum oxide (AAO) template was performed using potentiostatic method of direct-current anodization (DCA) on costly high-purity (99.997%) aluminum foils at low temperatures of 0–10 °C to avoid dissolution effects which occurred frequently at room temperatures (RT) of 20–30 °C. In this paper, we show the hybrid pulse anodization (HPA) method with pulsing normal-positive and small-negative potential differences at RT for enhancing performance of AAO structure for both the cheap low-purity (99%) and costly high-purity (99.997%) aluminum foils. The HPA mainly takes advantages of effective cooling that arise from the nearly zero cathodic current and high-thermal-conductivity liquid electrolyte on the foils. The HPA is different from the traditional pulse anodization with alternating both high and low positive potential differences (/currents) or both one-positive and one-zero potential differences. The HPA not only merits manufacturing convenience and cost reduction but also promotes pore distribution uniformity of AAO at severe conditions of cheap low-purity Al foils and relatively high room temperature. The pore distribution uniformity can be improved by HPA in a suitable duration compared with the DCA. Very good AAO distribution uniformity (91%) was achieved in high-purity aluminum foil by HPA because it can suppress the Joule's heat to diminish the dissolution reaction. The evolution of AAO distribution uniformity for both the HPA and DCA on Al foil purities and process durations were comparatively investigated.  相似文献   

12.
A novel method for the fabrication of highly ordered nanopore arrays with very small diameter of 14 nm was demonstrated by using low-temperature anodization. Two-step anodization was carried out at 25 V, sulfuric acid concentration of 0.3 M, and electrolyte temperature of −15 °C. After anodization, a regular pore array with mean diameter of 14 nm and interpore distance of 65 nm was formed. The pore diameter and regular arrangement were confirmed by scanning electron microscopy (SEM) and fast Fourier transformation (FFT), respectively. The present results strongly suggest that the diameter of pores in a highly ordered alumina template can be reduced by lowering the anodization temperature.  相似文献   

13.
A two-step anodization process performed at 0 °C was used to prepare highly ordered porous anodic alumina on the AA1050 alloy and high purity aluminum foil. The anodizing of both substrates was carried out in 0.3 M sulfuric acid and 0.3 M oxalic acid baths at 25 V and 40 V, respectively. The effect of the extended duration of the second anodizing step on pore order degree and structural features of AAO membranes was studied. The presence of alloying elements affects not only the rate of oxide growth but also the microstructure of the anodic film. It was found that pore circularity and regularity of pore arrangement in AAO membranes formed on the AA1050 alloy were always worse than those observed on the pure Al substrate. The structural features, such as pore diameter, interpore distance, wall thickness, barrier layer thickness, porosity and pore density of porous anodic alumina formed on AA1050 are a little different from those obtained for high purity Al. The extended time of the second anodizing step, up to 16 h does not affect significantly the regularity of pore order and all structural features of AAO membranes, independently of the anodizing electrolyte.  相似文献   

14.
Thin films of porous anodic aluminum oxide (AAO) on tin-doped indium oxide (ITO) substrates were fabricated through evaporation of a 1,000- to 2,000-nm-thick Al, followed by anodization with different durations, electrolytes, and pore widening. A faster method to obtain AAO on ITO substrates has been developed, which with 2.5 vol.% phosphoric acid at a voltage of 195 V at 269 K. It was found that the height of AAO films increased initially and then decreased with the increase of the anodizing time. Especially, the barrier layers can be removed by extending the anodizing duration, which is very useful for obtaining perforation AAO and will broaden the application of AAO on ITO substrates.  相似文献   

15.
A hard anodization (HA) technique is employed using different mixtures of phosphoric/oxalic acid for fast fabrication of alumina nanopore arrays in voltages higher than 200 V. The mixtures enable to avoid the breakdown of porous anodic alumina (PAA) in the high voltages. It is revealed for the first time that continuously tunable pore intervals (Dint) from 500 to 750 nm can be controlled by varying the concentrations of oxalic acid at anodization voltages (Uanod) from 230 to 360 V, far beyond the Uanod in the single electrolyte of phosphoric acid or oxalic acid. The ratios of interpore distance, pore diameter and barrier layer thickness to anodization voltage are in the range of conventional HA process for each acid mixture. In this approach, the PAA film growth rate is 26 µm/h, being 7 times larger than that in typical mild anodization.  相似文献   

16.
Nanoporous alumina which was produced by a conventional direct current anodization [DCA] process at low temperatures has received much attention in various applications such as nanomaterial synthesis, sensors, and photonics. In this article, we employed a newly developed hybrid pulse anodization [HPA] method to fabricate the nanoporous alumina on a flat and curved surface of an aluminum [Al] foil at room temperature [RT]. We fabricate the nanopores to grow on a hemisphere curved surface and characterize their behavior along the normal vectors of the hemisphere curve. In a conventional DCA approach, the structures of branched nanopores were grown on a photolithography-and-etched low-curvature curved surface with large interpore distances. However, a high-curvature hemisphere curved surface can be obtained by the HPA technique. Such a curved surface by HPA is intrinsically induced by the high-resistivity impurities in the aluminum foil and leads to branching and bending of nanopore growth via the electric field mechanism rather than the interpore distance in conventional approaches. It is noted that by the HPA technique, the Joule heat during the RT process has been significantly suppressed globally on the material, and nanopores have been grown along the normal vectors of a hemisphere curve. The curvature is much larger than that in other literatures due to different fabrication methods. In theory, the number of nanopores on the hemisphere surface is two times of the conventional flat plane, which is potentially useful for photocatalyst or other applications.PACS: 81.05.Rm; 81.07.-b; 82.45.Cc.  相似文献   

17.
《Ceramics International》2020,46(6):7681-7686
Porous anodic aluminum oxide templates with average pore size of approximately 100 nm were synthesized by two step anodization processes. Pure and Yttrium substituted BiFeO3 nano-structures with different concentrations were hydrothermally grown on anodic aluminum oxide templates to explore its various physical properties. X-ray diffraction was employed to extract the crystallographic information revealed the formation of rhombohedral geometry with R-3c space group. Field emission scanning electron microscopy displayed the filling up of pores with growth of distorted diamond and flakes like BiFeO3 and Yttria enriched nanostructures, respectively. Energy dispersive X-ray spectroscopy was confirmed the presence of expected elemental contents in each template. UV–Vis spectrophotometry recorded a significant increment in optical absorption of AAO template with growth of nanostructures. The value of optical band gap was found to decrease from 2.49 eV to 2.02 eV with incorporation of metallic yttrium content. Dielectric permittivity was found to increase substantially from 19 to 159 in Yttria containing nano-flakes with comparatively low loss factor of 0.84 disclosed these templates as prominent candidate for energy storage applications.  相似文献   

18.
The formation of self-organized porous titania is achieved by electrochemical anodization under a potentiostatic regime. Anodic titanium oxide (ATO) was fabricated by a three-step self-organized anodization of the Ti foil in an ethylene glycol electrolyte containing 0.38 wt% of NH4F and 1.79 wt% of H2O. Anodizing was carried out at the constant cell potential ranging from 30 to 70 V at the temperature of 20 °C. It was found that nanoporous TiO2 arrays can be obtain only after a short duration of the third step (10 min). The influence of anodizing potential on the structural parameters of porous anodic titania including pore diameter, interpore distance, wall thickness, porosity and pore density was extensively studied. The linear dependencies between interpore distance, pore diameter and wall thickness upon the anodizing potential were found. The regularity of pore arrangement was monitored qualitatively by fast Fourier transforms (FFTs) of top-view FE-SEM images. It was found that the best arrangement of nanopores is observed at 40 V. This finding was confirmed by the analysis of pore circularity. The highest circularity of pores was observed once again at 40 V.  相似文献   

19.
The nanostructure dimensions and regularity of the hexagonal arrangement of nanopores formed by self-organized anodization of aluminium in a 20 wt.% sulphuric acid was investigated at various cell potentials and temperatures. The quantitative analyses of defects and Fourier transforms (FFT) performed from SEM images showed that regularity of nanopores arrangement can be improved by increasing anodizing potential, independently of the anodizing temperature. The best result in controlled anodization of aluminium can be obtained at 25 V and the temperature of 1 °C. The pore size and interpore distance distribution diagrams constructed for 1000 independent measurements showed that increasing uniformity of pore diameter and interpore distance is directly responsible for improvement of the regularity of hexagonal arrangement of nanopores observed with increasing anodizing potential at temperatures of −8 or 1 °C. At 25 V and independently of the anodizing temperature, the reduced number of generated defects is predominant factor improving regularity of the nanopore arrangement. The temperature influence on the lattice data, porosity of the nanostructure and real current density at the bottom of nanopores have been demonstrated.  相似文献   

20.
Layers of nanoporous aluminum oxide (alumina) have been obtained using the electrochemical etching technique by varying technological regimes. The surface morphology and cleavages of obtained experimental samples are studied using scanning electron microscopy (SEM). It is established that with the growth of the anodization temperature, the oxide layer thickness, the diameter of pores, interpore distances, and the porosity increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号