首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new strategy was introduced to achieve high volume fraction of tristructural isotropic (TRISO) particles (> 35 vol%) in fully ceramic microencapsulated (FCM) fuels. The proposed strategy requires (1) applying a controlled coating of a SiC matrix on the TRISO particles, (2) forming the coated TRISO particles using cold isostatic pressing, and (3) sintering the formed sample without applied pressure. The strategy was very effective for preventing both the rupture of TRISO particles and matrix cracking during sintering. The thinner the coating layer, the higher the volume fraction of the TRISO particles obtained in the FCM pellets. However, when the coating thickness was extremely thin (≤ 133 μm), radial cracks were observed near the TRISO particles in the SiC matrix after sintering. The maximum TRISO volume fraction (∼35.3 %) was obtained when the coating thickness was ∼215 μm and the TRISO pellets had no cracks in the SiC matrix.  相似文献   

2.
This study suggests a new additive composition based on AlN–Y2O3–Sc2O3–MgO to achieve successful densification of SiC without applied pressure at a temperature as low as 1850 °C. The typical sintered density, flexural strength, fracture toughness, and hardness of the SiC ceramics sintered at 1850 °C without applied pressure were determined as 98.3%, 510 MPa, 6.9 MPa·m1/2, and 24.7 GPa, respectively.Fully ceramic microencapsulated (FCM) fuels containing 37 vol% tristructural isotropic (TRISO) particles could be successfully sintered at 1850 °C using the above matrix without applied pressure. The residual porosity of the SiC matrix in the FCM fuels was only 1.6%. TRISO particles were not damaged during processing, which included cold isostatic pressing under 204 MPa and sintering at 1850 °C for 2 h in an argon atmosphere. The thermal conductivity of the pressureless sintered FCM pellet with 37 vol% TRISO particles was 44.4 Wm?1 K?1 at room temperature.  相似文献   

3.
The effects of the starting SiC powder (α or β) with the addition of 5.67 wt% AlN–Y2O3–CeO2–MgO additives on the residual porosity and thermal conductivity of fully ceramic microencapsulated (FCM) fuels were investigated. FCM fuels containing ~41 vol% and ~37 vol% tristructural isotropic (TRISO) particles could be sintered at 1870 °C using α-SiC and β-SiC powders, respectively, via a pressureless sintering route. The residual porosities of the SiC matrices in the FCM fuels prepared using the α-SiC and β-SiC powders were 1.1% and 2.3%, respectively. The thermal conductivities of FCM pellets with ~41 vol% and ~37 vol% TRISO particles (prepared using the α-SiC and β-SiC powders, respectively) were 59 and 41 Wm?1K?1, respectively. The lower porosity and higher thermal conductivity of FCM fuels prepared using the α-SiC powder were attributed to the higher sinterability of the α-SiC powder than that of the β-SiC powder.  相似文献   

4.
Thermophysical properties were investigated for zirconium diboride (ZrB2) and ZrB2–30 vol% silicon carbide (SiC) ceramics. Thermal conductivities were calculated from measured thermal diffusivities, heat capacities, and densities. The thermal conductivity of ZrB2 increased from 56 W (m K)−1 at room temperature to 67 W (m K)−1 at 1675 K, whereas the thermal conductivity of ZrB2–SiC decreased from 62 to 56 W (m K)−1 over the same temperature range. Electron and phonon contributions to thermal conductivity were determined using electrical resistivity measurements and were used, along with grain size models, to explain the observed trends. The results are compared with previously reported thermal conductivities for ZrB2 and ZrB2–SiC.  相似文献   

5.
A silicon carbide (SiC) layer is an outer-coated layer of spent tri-isotropic (TRISO) fuel particles and it is known to be a pressure vessel for retaining fission products, and preventing contamination in the primary circuit of a nuclear reactor. The goal of this article is to elucidate the chemical bonding and an interface formation of an alkaline borosilicate glass (ABG) with the coating layer of TRISO fuel particles. Particular emphasis is placed on the analysis of the intermediate chemical phase at the interface SiC/glass as a function of the material impurity and thickness of the SiC layer. The findings provide valuable information regarding the restriction parameters of immobilisation TRISO particles in glass. The interaction between the glass and SiC caused a total destruction of a thin SiC layer (10 μm), a random partial interaction to a thick SiC layer (40 μm) and formation of bubbles (CO2, CO) to an inner pyrolitic carbon (IPYC). The Raman spectroscopy analysis revealed that the interaction of ABG with the SiC layer occurred at a point, where a low excess of carbon was co-deposited during chemical vapour deposition process. The interaction resulted in a formation of a mono-crystal SiC, dispersed in vitreous silica as a crystalline inclusion.  相似文献   

6.
To apply SiC ceramics as a matrix for fully ceramic microencapsulated (FCM) fuels, the equivalent boron content (EBC) factors of elements in the sintering additives should be considered as an important criterion. A previously developed quaternary additive composition based on AlN–Y2O3–Sc2O3–MgO contained Sc, which has a relatively high EBC factor (8.56 × 10?3). This study proposes a novel quaternary additive composition (AlN–Y2O3–CeO2–MgO), in which Sc is replaced by Ce (EBC factor = 6.36 × 10-5). The new additive composition achieved successful densification of the SiC matrix at 1850 °C without applied pressure. FCM pellets containing 36 vol% tristructural isotropic (TRISO) particles were successfully sintered at 1850 °C using the above matrix without applied pressure. The thermal conductivities of the FCM pellets prepared via pressureless sintering with 36 vol% TRISO particles were 43.9 W·m-1·K-1 and 25.8 W·m-1·K-1 at 25 °C and 500 °C, respectively.  相似文献   

7.
以聚酰胺(PA6)为基体,氮化硅(SiC)为导热填料,钛酸钡(BT)为介电填料,通过热压法制备出系列复合材料;研究了不同粒径填料的搭配对材料导热与介电性能的影响。结果表明:在填充量较低时,使用混合粒径导热填料能产生一定的级配效应,从而提高复合材料的导热性能。总填充量为26%时,以4∶1的比例,用粒径为0.5~0.7μm和3μm的SiC共同填充PA6,制备获得了最高导热系数为0.9198W/(m·K)的复合材料,而不同粒径、不同功能的混合功能填料还能产生协同效应,进一步提升材料的导热性能并使材料同时获得较好的介电性能,当SiC填充量为20%,BT填充量为20%时,复合材料的导热系数达到1.1110W/(m·K),介电常数到达16(100Hz),损耗保持在0.075(100Hz)左右。  相似文献   

8.
In this study, CNTs/SiC micro-pillars at controlled content ratios were introduced into C/SiC composites as heat transfer channels to improve the thermal conductivity in the thickness direction. The thermal conductivities and bending strengths before and after heat treatment at 1650 °C were investigated and the results were discussed. The theoretical calculations and finite element analyses confirmed that CNTs/SiC micro-pillars successfully worked as heat transfer channels. The theoretical thermal conductivity calculated by effective medium theory (EMT) model was 19.25 W/m⋅k and agreed-well with the experimental value. The measured thermal conductivity was estimated to 20.69 W/m⋅k and improved to 22.36 W/m⋅k after heat treatment. The latter was 3.56-fold higher than that of traditional C/SiC and attributed to increased grain growth during heat treatment. The optimal bending strength before heat treatment was recorded as 324.5 ± 23.74 MPa due to microstructure evolution caused by CNTs. After heat treatment, the bending strength improved by 138 % with ductile fracture mode attributed to ordered layer structure of PyC interphase and complex phase composition of the composites. These features benefited the abundant propagation of cracks and energy consumption. In sum, introduction of heat transfer channels into C/SiC composites provided a new way to improve the thermal conductivity in thickness direction of ceramic matrix composites.  相似文献   

9.
Thermal conductivity at room temperature of diamond composites of two types: with a diamond skeleton and with diamond grains imbedded in a non-diamond matrix was evaluated in dependence of the diamond grain size (d) varied from a ten of microns to 500 μm. The thermal conductivity of the compacts with diamond skeleton obtained in the Cu–diamond system at high pressure of 8 GPa strongly increases with diamond particles size approaching the maximum value of 9 W/cm K at d  200 μm. The compacts sintered in the Cu–Ti–diamond, Al–Si–diamond and Si–diamond systems at lower pressure (2 GPa) are formed predominantly owing to the presence of the binder. It was found for these conditions that the thermal conductivity is less sensitive to the diamond grain size, reaching the value of 6 W/cm K for the composites with SiC–Si matrix.  相似文献   

10.
Silicon carbide/silicon carbide (SiC/SiC) composites are often used in oxidizing environments at high temperatures. Measurements of the thermal conductance of the oxide layer provide a way to better understand the oxidation process with high spatial resolution. We use time-domain thermoreflectance (TDTR) to map the thermal conductance of the oxide layer and the thermal conductivity of the SiC/SiC composite with a spatial resolution of 3 μm. Heterodyne detection using a 50-kHz-modulated probe beam and a 10-MHz-modulated pump suppresses the coherent pick-up and enables faster data acquisition than what has previously been possible using sequential demodulation. By analyzing the noise of the measured signals, we find that in the limit of small integration time constants or low laser powers, the dominant source of noise is the input noise of the preamplifier. The thermal conductance of the oxide that forms on the fiber region is lower than the oxide on the matrix due to small differences in thickness and thermal conductivity.  相似文献   

11.
Thin diamond coatings are often suggested to enhance thermal conductivity of some substrate. We measured the effective thermal conductivity of varying thicknesses of diamond on tape cast, polycrystalline silicon carbide. The effective thermal conductivity of 30 μm diamond on tape cast silicon carbide is 1.7 W/(cm K). The effective thermal conductivity can be increased to 2.2 W/(cm K) by increasing the diamond thickness to approximately 70 μm. With the measured effective thermal conductivity, the thicknesses of the diamond film and substrate, and knowledge of the thermal conductivity of the substrate material, the thermal conductivity of the diamond layer can be calculated from a simple formula. The thermal conductivity of the 30-μm and 69-μm diamond layers were found to be 3.9 W/(cm K) and 5.8 W/(cm K), respectively.  相似文献   

12.
This article described a novel method of preparation of Si–diamond–SiC composites by in-situ reactive spark plasma sintering (SPS) process. The relative packing density of Si–diamond–SiC composite was 98.5% or higher in a volume fraction range of diamond between 20% and 60%. Si–diamond–SiC composites containing 60 vol% diamond particles yielded a thermal conductivity of 392 W/m K, higher than 95% the theoretical thermal conductivity calculated by Maxwell–Eucken's equation. Coefficients of thermal expansion (CTEs) of the composites are lower than the values of theoretical models, indicating strong bonding between the diamond particle and the Si matrix in the composite. The microstructures of these materials were studied by field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD). As a result of reaction between diamond and silicon, SiC phase formed.  相似文献   

13.
Among the various concepts of SiC-based accident-tolerant fuel cladding, duplex SiC cladding, consisting of an inner composite layer and an outer monolithic SiC layer, is considered an optimal design due to its low load failure probability. In this study, SiC nanowires (SiCnw) were introduced on the substrate graphite rod to decrease the diameter of architectural valley-regions of SiC fiber (SiCf) tubular preform. By avoiding the architectural valley-voids, a dense two-layer SiCnw tube consisting of an inner SiC fiber-reinforced SiC matrix (SiCf/SiC) composite layer deposited by chemical vapor infiltration with a smooth inner surface was obtained. The microstructure and thermal properties of as-obtained two-layer SiCnw tubes were studied. Results showed that the thermal conductivity of the whole tube was highly sensitive to variations in thermal conductivity of the inner composite layer. By improving the thermal conductivity of the inner composite layer, the two-layer SiCnw tube exhibited a thermal conductivity of 23.8 W m−1 K−1 at room temperature, which had an improvement of 71 % compared to the two-layer SiC tube (13.9 W m−1 K−1). Moreover, the thermal transport properties of the two-layer SiCnw tube were significantly improved by a reduction in roughness of the inner surface.  相似文献   

14.
以膨胀石墨为原料,采用超声分散法和化学镀法制得镀银纳米石墨微片,然后将其填充在环氧树脂基体中制备环氧树脂/镀银纳米石墨微片复合材料。结果表明,银粒子均匀镀覆在纳米石墨微片上,银层厚度为100 nm,有利于在环氧树脂基体中形成导热通路;与环氧树脂相比,环氧树脂/镀银纳米石墨微片复合材料的力学性能和热导率能都得到提高;当镀银纳米石墨微片含量为3 %时,复合材料的热导率为1.827 W/(m·K),比纯环氧树脂热导率提高了近5倍。  相似文献   

15.
以锌粉为导热填充剂对环氧有机硅树脂进行改性,考察了改性环氧有机硅树脂涂层干膜中锌粉含量对涂层导热系数的影响,分析了涂层厚度对碳钢基材导热性能的影响. 结果表明,环氧有机硅树脂涂层的导热系数约为0.19 W/(m?K),其耐温能力在200℃以上,可保证涂层在中低温烟气余热回收换热器表层长期工作而不发生任何热反应;添加锌粉可改善环氧改性有机硅涂层的导热性能,涂层干膜锌粉25wt%时,涂层材料导热系数达0.35 W/(m?K),较未添加锌粉时增大了84%. 复合材料的导热系数随涂层厚度增加而下降,无涂层的碳钢导热系数为47.59 W/(m?K),涂层厚度为200 ?m时,导热系数降至34.33 W/(m?K).  相似文献   

16.
High thermal conductivity, wear resistant graphite is desirable for a range of applications, for example as an electrode to minimize energy consumption in aluminium smelting. This paper demonstrates that by infiltrating the porosity by reactive infiltration with SiC at levels ranging from 4 to 12 vol.% or Si3N4 ranging from 7 to 19 vol.% the thermal conductivity can be raised progressively from ~41 W/m K to ~53 and 64 W/m K respectively. A simple analytical model predicts thermal conductivity rises with increasing reinforcement fraction only 7–9 % higher than that observed. This suggests that heat transfer between the graphite and the reinforcing particles is good making these materials good options where improved thermal conductivity and wear resistance over graphite is required.  相似文献   

17.
Changes in tensile properties, sample size, interfacial strength, and thermal conductivity of melt‐laminating layers of wood/ebonite natural rubber (NR) and expanded ethyelene–propylene diene rubber (EPDM) for polymeric roofing applications were monitored under a period of UV aging times for 60 days, the results being compared with single rubber layers of wood/NR and expanded‐EPDM. The experimental results suggested that the tensile modulus of the wood/NR‐EPDM melt‐laminating layer increased with increasing aging time. The tensile strength of the wood/NR layer decreased after prolonged UV aging, and positioned between that of the wood/NR and expanded‐EPDM layers. The sample size reduction of wood/NR layer with expanded‐EPDM top coating layer was lower than that for wood/NR single layer. The peel strength of the wood/NR‐EPDM melt‐laminating layer was found to decrease with increasing UV aging time as a result of delamination of the rubber layers. The thermal conductivity of the wood/NR‐EPDM melt‐laminating layer decreased from 0.085 to 0.070 W/m K with increasing aging times upto 40 days, but tended to increase to 0.080 W/m K at the aging time of 60 days. The experimental results in this work clearly suggested that expanded‐EPDM could be used as protecting layer, not only for moderation of photo‐oxidative degradations of wood/NR layer for roofing application, but also for minimization of dimension changes of the wood/NR‐EPDM melt‐laminating layer. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
The hydrothermal corrosion behavior of SiC layer in tristructural-isotropic (TRISO) fuel particles and its effect on the fracture strength were investigated. The corrosion test was performed using the static autoclave at 400°C/10.3 MPa. The SiC layer exhibited a thickness loss and the corrosion rate followed a linear law. During corrosion, carbon was formed on the SiC surface due to the loss of Si. The corrosion was found preferentially occurred at the grain boundary of SiC, leading to the grain detachment and pit formation. The rate determining step of the corrosion was SiO2 formation rather than SiO2 dissolution in the hydrothermal environment. The fracture strength of SiC shell after corrosion was evaluated using the crush test. It showed a slight decrease with an increase in corrosion time, due to the thickness reduction in SiC layer. The results of this study demonstrated that the SiC in TRISO particles has good corrosion resistance in the hydrothermal environment.  相似文献   

19.
Highly dense AlN–SiC composites with various SiC additions (0–50?wt-%) were fabricated at 1800°C by plasma activated sintering. The effect of SiC addition on structural, thermal and dielectric properties as well as microwave absorbing performance of the composites was investigated. The thermal conductivity decreases with increasing SiC addition, from 68.7 W (m?K)?1 for 0?wt-% SiC to 19.38?W (m?K)?1 for 50?wt-% SiC. On the contrary, the permittivity and dielectric loss increase gradually, from 7.6–8.5 to 22–26.7 and from 0.02–0.1 to 0.2–0.53, respectively. AlN–SiC composite with better thermal and dielectric properties in 30?wt-% SiC, whose thermal conductivity and dielectric loss are found to be 24.88?W (m?K)?1 and 0.15–0.74, respectively. Furthermore, the composite exhibits microwave absorbing performance with the minimum reflection loss (RL) of ?16.5 dB at 15.5 GHz and the frequency range of 2.6 GHz for RL below ?10 dB (90% absorption).  相似文献   

20.
The thermal conductivity and the particle-to-fluid heat-transfer coefficient for peanut-shaped polyester particles in a packed bed were determined simultaneously using the pseudo-random binary noise sequence (PRBNS) response technique. The modified Dispersion-Concentric (D-C) model was applied to beds packed with the non-spherical particles. A time domain method, using the convolution integral, was developed for removing the effects of the bed ends and the transducer time lag on the experimental responses. Parameter estimation was performed in the time domain, using a simplex method to fit the thermal response calculated from the parametric D-C model to the experimental response curve. The particle-to-fluid heat transfer coefficient in the bed was determined to be 106 W/m2. K at an interstitial fluid velocity of 2.0 m/s. The thermal conductivity of polyester was 0.22 W/m. K at 313 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号