首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Various SiC-ZrB2-ZrC ceramics were joined by fusion welding to determine the maximum silicon carbide content that could be joined. Commercial powders were hot pressed, machined, and preheated to 1450 °C before joining with a tungsten inert gas welding torch at 160–200 A. Resulting welds were cross-sectioned and analyzed to determine which compositions were weldable and to characterize microstructural evolution in welded samples. As compositions approached the ternary eutectic, the welds had smaller SiC grains and exhibited better weldability. Penetration depth of welds was controlled by a combination of current input and welding speed. The ternary eutectic in the system was found at 36.9 ± 1.3 vol% SiC, 42.7 ± 1.5 vol% ZrB2, and 20.4 ± 1.9 vol% ZrC and its melting temperature was 2330 ± 23 °C. A ternary phase diagram for the SiC-ZrB2-ZrC was constructed and proposed via microstructural analysis of arc melted pellets on binary joins between each binary eutectic and the ternary eutectic in the system.  相似文献   

2.
Zirconium diboride ceramics containing 20 vol% zirconium carbide were preheated to 1450 °C and plasma arc welded to produce continuous joints. Arc welding was completed using a current of 198 A, plasma flow rate of 0.75 l/min, and welding speed of ∼8 cm/min. Two fusion zones, having penetration depths of 4.4 and 2.3 mm, resulted in different microstructures. One fusion zone contained ZrB2 crystals, up to ∼1 mm in length, and a ZrB2–ZrC eutectic. The second fusion zone revealed ZrB2 and ZrC, along with C that was attributed to diffusion from the graphite support used during welding. ZrB2 and ZrC grains in the latter fusion zone were asymmetric, having an average maximum Feret diameter of 52.4 ± 53.2 μm and 10.8 ± 8.1 μm, respectively. Hardness, used to identify a heat affected zone for both weldments, increased from 12 GPa at the fusion zone boundary, to the hardness of the parent material, 15.2 ± 0.1 GPa.  相似文献   

3.
Ceramics consisting of titanium diboride with titanium carbide additions were fusion welded to produce continuous joins. A welding current of 135 A, welding speed of 8 cm/min, and plasma flow rate of 0.75 L/min were combined with a preheat temperature of ~1450°C to fusion weld coupons of TiB2 containing 20 vol% TiC with a thickness of 4 mm. The resulting fusion zone (FZ) was 3.9 mm deep at the center of the joint and 10.4 mm wide. During cooling of the melt pool, four distinct regions of crystal growth and nucleation were observed due to thermal gradients. Regions at the top and bottom of the FZ exhibited smaller TiB2 crystals due to higher nucleation rates whereas regions in the middle of the FZ showed higher growth rates, with TiB2 crystals up to 1.2 mm in length. Thermal gradients also affected cooling of the eutectic phase, causing a cellular structure to appear in the cooled eutectic. Plasma arc welding was a viable method for joining diboride‐based ceramics.  相似文献   

4.
Zirconium diboride and zirconium carbide‐based ceramics were joined by plasma arc welding to demonstrate the versatility of this technique. A parent material composition consisting of ZrB2 with 20 vol% ZrC was hot pressed to near full density, sectioned to produce specimens for welding, and welded together to produce billets for mechanical property studies. The four‐point flexure strength of the parent material was ~660 MPa, while the strength of the welded specimens ranged from ~140 to ~250 MPa. Microstructural analysis revealed that decreased strength in the welded specimens was caused by volume flaws, microcracking of large ZrB2 grains (up to 1 mm in length), and residual tensile stresses that developed at the surface of weld pools during cooling. The versatility of plasma arc welding was demonstrated by joining of ZrC‐based ceramics and fabricating three ZrB2–ZrC components for potential applications, including a high‐temperature electrical contact, an ultra‐high‐temperature thermocouple, and a wedge that was a notional wing leading edge. These three applications demonstrated the ability to join ceramics to a refractory metal, fabricate a chemically inert high‐temperature thermocouple, and produce complex shapes for aerospace applications.  相似文献   

5.
《Ceramics International》2016,42(15):16474-16479
A series of ZrB2-ZrC-SiC composites with various SiC content from 0 to 20 vol% were prepared by reactive hot-pressing using Zr, B4C and SiC as raw materials. Self-propagating high-temperature synthesis (SHS) occurred, and ZrC grains connected each other to form a layered structure when the SiC content is below 20 vol%. The evolution of microstructure has been discussed via reaction processes. The composite with 10 vol% SiC presents the most excellent mechanical properties (four-point bending strength: 828.6±49.9 MPa, Vickers hardness: 19.9±0.2 GPa) and finest grain size (ZrB2: 1.52 µm, ZrC: 1.07 µm, SiC: 0.79 µm) among ZrB2-ZrC-SiC composites with various SiC content from 0 to 20 vol%.  相似文献   

6.
ZrB2 was mixed with 0.5 wt% carbon and up to 10 vol% ZrC and densified by hot-pressing at 2000 °C. All compositions were > 99.8% dense following hot-pressing. The dense ceramics contained 1–1.5 vol% less ZrC than the nominal ZrC addition and had between 0.5 and 1 vol% residual carbon. Grain sizes for the ZrB2 phase decreased from 10.1 µm for 2.5 vol% ZrC to 4.2 µm for 10 vol% ZrC, while the ZrC cluster size increased from 1.3 µm to 2.2 µm over the same composition range. Elastic modulus was ~505 GPa and toughness was ~2.6 MPa·m½ for all compositions. Vickers hardness increased from 14.1 to 15.3 GPa as ZrC increased from 2.5 to 10 vol%. Flexure strength increased from 395 MPa for 2.5 vol% ZrC to 615 MPa for 10 vol% ZrC. Griffith-type analysis suggests ZrB2 grain pullout from machining as the strength limiting flaw for all compositions.  相似文献   

7.
Reactive hot pressing was used to prepare Zr1?xTixB2–ZrC composites with advantageous microstructure and mechanical properties from ZrB2–TiC powders. The reaction mechanisms and the effects of different levels of TiC on the physical and mechanical properties of the resulting composite were explored in detail and compared to conventionally hot‐pressed ZrB2 and ZrB2–ZrC. Incorporation of 10 to 30 vol% TiC enabled full densification and restrained grain growth, reducing the final average grain size from 5.6 μm in pure ZrB2 to a minimum of 1.4 μm in samples with 30 vol% TiC. The flexural strengths and hardnesses of the composites sintered with TiC were consequently greater than the conventionally processed ZrB2–ZrC materials, increasing from 440 MPa and 17.4 GPa to a maximum of 670 MPa and 24.2 GPa at 10 vol% TiC. However, despite a decrease in the total average grain size, the flexural strength at higher TiC levels was limited by an increase in ZrC grain growth, which was observed to determine the flexural strength of the reaction sintered composites similar to the case of ZrB2–SiC.  相似文献   

8.
《Ceramics International》2020,46(14):22661-22673
Characteristics of ZrB2–SiC ultrahigh temperature ceramic matrix composites (UHTCMCs) reinforced with ZrC and carbon fiber (Cf) were investigated in this article. Spark plasma sintering (SPS) process was utilized to fabricate the samples at 1800 °C for 5 min under 30 MPa punch pressure and vacuumed atmosphere. In all samples, the volume ratio of ZrB2: SiC was equal to 4:1, and the summation of ZrC and Cf reinforcements was 7.5 vol% with different ZrC: Cf ratios. Field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), densitometry, flexural strength, and hardness measurements were employed for characterization of the prepared samples. Microstructural inspection revealed the formation of SiC sheath around the carbon fibers due to several reactions in the surface SiO2 layers existed on the SiC particles. Optimal flexural strength (628.4 MPa) and hardness (20.8 GPa) values were achieved for the sample co-reinforced with 6.5 vol% ZrC and 1 vol% Cf, with a relative density of 97.7%.  相似文献   

9.
ZrC–SiC ceramics were fabricated by high-energy ball milling and reactive hot pressing of ZrH2, carbon black, and varying amounts of SiC. The ceramics were composed of nominally pure ZrC containing 0 to 30 vol% SiC particles. The relative density increased as SiC content increased, from 96.8% for nominally pure ZrC to 99.3% for ZrC-30 vol% SiC. As SiC content increased from 0 to 30 vol%, Young's modulus increased from 404 ± 11 to 420 ± 9 GPa and Vickers hardness increased from 18.5 ± 0.7 to 23.0 ± 0.5 GPa due to a combination of the higher relative density of ceramics with higher SiC content and the higher Young's modulus and hardness of SiC compared to ZrC. Flexure strength was 308 ± 11 MPa for pure ZrC, but increased to 576 ± 49 MPa for a SiC content of 30 vol%. Fracture toughness was 2.3 ± 0.2 MPa·m1/2 for pure ZrC and increased to about 3.0 ± 0.1 MPa·m1/2 for compositions containing SiC additions. The combination of high-energy ball milling and reactive hot pressing was able to produce ZrC–SiC ceramics with sub-micron grain sizes and high relative densities with higher strengths than previously reported for similar materials.  相似文献   

10.
ZrC ceramics containing 30 vol% SiC-ZrB2 were produced by high-energy ball milling and reactive hot pressing. The effects of ZrB2 content on the densification, microstructure, and mechanical properties of ceramics were investigated. Fully dense ceramics were achieved as ZrB2 content increased to 10 and 15 vol%. The addition of ZrB2 suppressed grain growth and promoted dispersion of the SiC particles, resulting in fine and homogeneous microstructures. Vickers hardness increased from 23.0 ± 0.5 GPa to 23.9 ± 0.5 GPa and Young’s modulus increased from 430 ± 3 GPa to 455 ± 3 GPa as ZrB2 content increased from 0 to 15 vol%. The increases were attributed to a combination of the higher relative density of ceramics with higher ZrB2 content and the higher Young’s modulus and hardness of ZrB2 compared to ZrC. Indentation fracture toughness increased from 2.6 ± 0.2 MPa⋅m1/2 to 3.3 ± 0.1 MPa⋅m1/2 as ZrB2 content increased from 0 to 15 vol% due to the increase in crack deflection by the uniformly dispersed SiC particles. Compared to binary ZrC-SiC ceramics, ternary ZrC-SiC-ZrB2 ceramics with finer microstructure and higher relative densities were achieved by the addition of ZrB2 particles.  相似文献   

11.
《Ceramics International》2016,42(16):18612-18619
The synergetic effects SiC particles and short carbon fibers (Csf) as well as hot pressing parameters (sintering temperature, dwell time and applied pressure) on the grain growth of ZrB2-based composites were investigated. Taguchi methodology was employed for the design of experiments to study the microstructure and grain growth of ZrB2–SiC–Csf ceramic composites. Three hot pressing parameters and SiC/Csf ratio were selected as the scrutinized variables. The sintering temperature and SiC/Csf ratio were identified by ANOVA as the most effective variables on the gain growth of ZrB2-based samples. Removal of oxide impurities from the surface of starting particles by the reactant Csf, not only hindered the extraordinary grain growth of ZrB2 matrix, but also improved the sinterability of the ceramics. A fully dense ceramic with an average grain size of 8.3 µm was obtained by hot pressing at 1850 °C for 30 min under 16 MPa through adding 20 vol% SiC and 10 vol% Csf to the ZrB2 matrix. SEM observations and EDS analysis verified the in-situ formation of ZrC which can restrain the growth of ZrB2 particles, similar to the role of SiC, by the pinning of grain boundaries as another stationary secondary phase.  相似文献   

12.
ZrC-ZrB2-SiC composites were prepared by arc-melting in Ar atmosphere using ZrC, ZrB2 and SiC as starting materials. The ternary eutectic composition of 20ZrC-30ZrB2-50SiC (mol%) was first identified. SiC about 7?μm in length and 500?nm in diameter, ZrC about 4 μm in length and 1 μm in diameter, in rod-like microstructure, were uniformly dispersed in ZrB2 matrix of eutectic composite. The eutectic temperature of ZrC-ZrB2-SiC composite was approximately 2550?K. The Vickers Hardness and fracture toughness of eutectic composite was 23?GPa and 6.2?MPa?m1/2, respectively. The electrical conductivity decreased from 7.2?×?107 to 1.75?×?106?S?m?1 with the temperature increasing from 287 to 800?K. The thermal conductivity decreased from 85 to 61?W?K?1?m?1 with increasing temperature from 287 to 973?K.  相似文献   

13.
《Ceramics International》2016,42(3):4498-4506
The effects of processing variables on densification behavior of hot pressed ZrB2-based composites, reinforced with SiC particles and short carbon fibers (Csf), were studied. A design of experiment approach, Taguchi methodology, was used to investigate the characteristics of ZrB2–SiC–Csf composites concentrated upon the hot pressing parameters (sintering temperature, dwell time and applied pressure) as well as the composition (vol% SiC/vol% Csf). The analysis of variance recognized the sintering temperature and SiC/Csf ratio as the most effective variables on the relative density of hot pressed composites. The microstructural investigations showed that Csf can act as a sintering aid and eliminate the oxide impurities (e.g. B2O3, ZrO2 and SiO2) from the surfaces of raw materials. A fully dense composite was achieved by adding 10 vol% Csf and 20 vol% SiC to the ZrB2 matrix via hot pressing at 1850 °C for 30 min under a pressure of 16 MPa. Moreover, the in-situ formation of interfacial ZrC, which also improves the sinterability of ZrB2-based composites, was studied by energy-dispersive X-ray spectroscopy analysis and verified thermodynamically.  相似文献   

14.
A volatility diagram of zirconium carbide (ZrC) at 1600, 1930, and 2200°C was calculated in this work. Combining it with the existing volatility diagrams of ZrB2 and SiC, the volatility diagram of a ternary ZrB2‐SiC‐ZrC (ZSZ) system was constructed in order to interpret the oxidation behavior of ZSZ ceramics. Applying this diagram, the formation of ZrC‐corroded and SiC‐depleted layers and the oxidation sequence of each component in ZSZ during oxidation and ablation could be well understood. Most of the predictions from the diagrams are consistent with the experimental observations on the oxidation scale of dense ZrB2‐SiC‐ZrC ceramics/coatings after oxidation at 1600°C or ablation at 1930 and 2200°C. The reasons for the discrepancy are also briefly discussed.  相似文献   

15.
《Ceramics International》2016,42(4):5375-5381
The influences of adding SiC on the microstructure and densification behavior of ZrB2 and TiB2 ceramics, hot pressed at 1850 °C for 60 min under 20 MPa, were investigated. The sintered samples were characterized by SEM, EDS and XRD methods. A fully dense TiB2-based ceramic was obtained by adding 30 vol% SiC. The grain size of ZrB2 or TiB2 matrices in the final microstructures decreased with increasing SiC content. The XRD analyses, microstructural characterization as well as thermodynamical calculations proved the in-situ formation of TiC in the SiC reinforced TiB2-based composites. The interfaces between ZrB2 and SiC grains in the SiC reinforced ZrB2-based composites were free of any impurities or tertiary interfacial phases such as ZrC. This result was consistent with the X-ray diffraction pattern and thermodynamics.  相似文献   

16.
The thermal conductivity, thermal expansion, Youngs Modulus, flexural strength, and brittle–plastic deformation transition temperature were determined for HfB2, HfC0·98, HfC0·67, and HfN0·92 ceramics. The oxidation resistance of ceramics in the ZrB2–ZrC–SiC system was characterized as a function of composition and processing technique. The thermal conductivity of HfB2 exceeded that of the other materials by a factor of 5 at room temperature and by a factor of 2·5 at 820°C. The transition temperature of HfC exhibited a strong stoichiometry dependence, decreasing from 2200°C for HfC0·98 to 1100°C for HfC0·67 ceramics. The transition temperature of HfB2 was 1100°C. The ZrB2/ZrC/SiC ceramics were prepared from mixtures of Zr (or ZrC), SiB4, and C using displacement reactions. The ceramics with ZrB2 as a predominant phase had high oxidation resistance up to 1500°C compared to pure ZrB2 and ZrC ceramics. The ceramics with ZrB2/SiC molar ratio of 2 (25 vol% SiC), containing little or no ZrC, were the most oxidation resistant.  相似文献   

17.
《Ceramics International》2017,43(11):8411-8417
The effect of nano-sized carbon black on densification behavior, microstructure, and mechanical properties of zirconium diboride (ZrB2) – silicon carbide (SiC) ceramic was studied. A ZrB2-based ceramic matrix composite, reinforced with 20 vol% SiC and doped with 10 vol% nano-sized carbon black, was hot pressed at 1850 °C for 1 h under 20 MPa. For comparison, a monolithic ZrB2 ceramic and a ZrB2–20 vol% SiC composite were also fabricated by the same processing conditions. By adding 20 vol% SiC, the sintered density slightly improved to ~93%, compared to the relative density of ~90% of the monolithic one. However, adding 10 vol% nano-sized carbon black to ZrB2–20 vol% SiC composite meaningfully increased the sinterability, as a relatively fully dense sample was obtained (RD=~100%). The average grain size of sintered ZrB2 was significantly affected and controlled by adding carbon black together with SiC acting as effective grain growth inhibitors. The Vickers hardness, flexural strength and fracture toughness of SiC reinforced and carbon black doped composites were found to be remarkably higher than those of monolithic ZrB2 ceramic. Moreover, unreacted carbon black additives in the composite sample resulted in the activation of some toughening mechanisms such as crack deflections.  相似文献   

18.
《Ceramics International》2020,46(1):156-164
Spark plasma sintering (SPS) route was employed for preparation of quadruplet ZrB2–SiC–ZrC–Cf ultrahigh temperature ceramic matrix composites (UHTCMC). Zirconium diboride and silicon carbide powders with a constant ZrB2:SiC volume ratio of 4:1 were selected as the baseline. Mixtures of ZrB2–SiC were co-reinforced with zirconium carbide (ZrC: 0–10 vol%) and carbon fiber (Cf: 0–5 vol%), taking into account a constant ratio of 2:1 for ZrC:Cf components. The sintered composite samples, processed at 1800 °C for 5 min and 30 MPa punch press under vacuumed atmosphere, were characterized by densitometry, field emission scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometry as well as mechanical tests such as hardness and flexural strength measurements. The results verified that the composite co-reinforced with 5 vol% ZrC and 2.5 vol% Cf had the optimal characteristics, i.e., it reached a relative density of 99.6%, a hardness of 18 GPa and a flexural strength of 565 MPa.  相似文献   

19.
Three phase boride and carbide ceramics were found to have remarkably high hardness values. Six different compositions were produced by hot pressing ternary mixtures of Group IVB transition metal diborides, SiC, and B4C. Vickers’ hardness at 9.8 N was ~31 GPa for a ceramic containing 70 vol% TiB2, 15 vol% SiC, and 15 vol% B4C, increasing to ~33 GPa for a ceramic containing equal volume fractions of the three constituents. Hardness values for the ceramics containing ZrB2 and HfB2 were ~30% and 20% lower than the corresponding TiB2 containing ceramics, respectively. Hardness values also increased as indentation load decreased due to the indentation size effect. At an indentation load of 0.49 N, the hardness of the previously reported ceramic containing equal volume fractions of TiB2, SiC and B4C was ~54 GPa, the highest of the ceramics in the present study and higher than the hardness values reported for so-called “superhard” ceramics at comparable indentation loads. The previously reported ceramic containing 70 vol% TiB2, 15 vol% SiC, and 15 vol% B4C also displayed the highest flexural strength of ~1.3 GPa and fracture toughness of 5.7 MPa·m1/2, decreasing to ~0.9 GPa and 4.5 MPa·m1/2 for a ceramic containing equal volume fractions of the constituents.  相似文献   

20.
ZrB2 ceramics were prepared by in-situ reaction hot pressing of ZrH2 and B. Additions of carbon and excess boron were used to react with and remove the residual oxygen present in the starting powders. Additions of tungsten were utilized to make a ZrB2-4 mol%W ceramic, while a change in the B/C ratio was used to produce a ZrB2-10 vol% ZrC ceramic. All three compositions reached near full density. The baseline ZrB2 and ZrB2–ZrC composition contained a residual oxide phase and ZrC inclusions, while the W-doped composition contained residual carbon and a phase that contained tungsten and boron. All three compositions exhibited similar values for flexure strength (~520 MPa), Vickers hardness (~15 GPa), and elastic modulus (~500 to 540 GPa). Fracture toughness was about 2.6 MPa m1/2 for the W-doped ZrB2 compared to about 3.8 MPa m½ for the ZrB2 and ZrB2–ZrC ceramics. This decrease in fracture toughness was accompanied by an observed absence of crack deflection in the W-doped ZrB2 compared with the other compositions. The study demonstrated that reaction-hot-pressing can be used to fabricate ZrB2 based ceramics containing solid solution additives or second phases with comparable mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号