首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cobalt nickel ferrite (Co1‐xNixFe2O4 x = 0–1.0) nanoparticles were synthesized by a hydrothermal method. Effects of nickel content and organic template on the microstructure and magnetic property of the nanoparticles were studied. The experimental results indicate that Ni2+ substitution for Co2+ and special synthesis technique leads to obvious change in microstructure and magnetic property of the ferrites. The ferrites show nonlinear variations in the saturation magnetization and the coercivity with nickel substitution, which are explained by shape anisotropy and supernormal cation distribution. The organic template also leads to variation in the microstructure and properties of the nanoparticles.  相似文献   

2.
Ni2+ ions doped on Mg0.40Mn0.60‐xNixFe2O4 compositions with 0.00  x ≤ 0.60 have been synthesized by coprecipitation method and taken for the present work to study the dielectric properties and impedance characterization using the XRD and electrical measurements. The X‐ray diffraction and FT‐IR revealed that the ferrite has single‐phase cubic spinel structure. The calculated particle size from XRD data verified using SEM as well as AFM. These photographs show that the ferrites have crystalline size in the range of 20–50 nm. It was observed that the particle size decreased and Ni concentration increased. The dielectric constant and dielectric loss decreased with increase in nonmagnetic Ni2+ ions. Electrical properties indicate that synthesized nanoferrite particles have high resistivity.  相似文献   

3.
We, herein, present comparative investigations on the Na0.5Bi0.5Cu3Ti4O12 ceramic samples with and without 10 mol% excess of Na/Bi. The samples were prepared by the standard solid‐state reaction technique. The dielectric properties of the sample were investigated in the temperature (93–320 K) and frequency (20 Hz–10 MHz) windows. Three thermally activated dielectric relaxations observed in Na0.5Bi0.5Cu3Ti4O12 with the activation energies of 0.104, 0.267, and 0.365 eV for the low‐, middle‐, and high‐temperature dielectric relaxations, respectively. Only the low‐temperature relaxation was observed in both Na and Bi excessive samples. X‐ray photoemission spectroscopy results revealed the mixed‐valent structures of Cu+/Cu2+ and Ti3+/Ti4+ in Na0.5Bi0.5Cu3Ti4O12 sample, but only Ti3+/Ti4+ in Na and Bi excessive samples. Our results showed that the dielectric properties of the investigated samples are strongly linked with these mixed‐valent structures. The high‐ and low‐temperature relaxations were attributed to be a polaron‐type relaxation due to localized carriers hopping between Cu+/Cu2+ and Ti3+/Ti4+, respectively. The middle‐temperature relaxation is suggested to be a dipole‐type relaxation caused by the defect complex of bismuth and oxygen vacancies.  相似文献   

4.
Na‐ion conducting Na1+x[SnxGe2?x(PO4)3] (x = 0, 0.25, 0.5, and 0.75 mol%) glass samples with NASICON‐type phase were synthesized by the melt quenching method and glass‐ceramics were formed by heat treating the precursor glasses at their crystallization temperatures. XRD traces exhibit formation of most stable crystalline phase NaGe2(PO4)3 (ICSD‐164019) with trigonal structure. Structural illustration of sodium germanium phosphate [NaGe2(PO4)3] displays that each germanium is surrounded by 6 oxygen atom showing octahedral symmetry (GeO6) and phosphorous with 4 oxygen atoms showing tetrahedral symmetry (PO4). The highest bulk Na+ ion conductivities and lowest activation energy for conduction were achieved to be 8.39 × 10?05 S/cm and 0.52 eV for the optimum substitution levels (x = 0.5 mol%, Na1.5[Sn0.5Ge1.5(PO4)3]) of tetrahedral Ge4+ ions by Sn4+ on Na–Ge–P network. CV studies of the best conducting Na1.5[Sn0.5Ge1.5(PO4)3] glass‐ceramic electrolyte possesses a wide electrochemical window of 6 V. The structural and EIS studies of these glass‐ceramic electrolyte samples were monitored in light of the substitution of Ge by its larger homologue Sn.  相似文献   

5.
Marine CSEM is a new technique for detection of deep target hydrocarbons. Aluminum EM antenna was developed, and nanostructured NiZn magnetic feeders were used to increase the field strength from EM antenna for deep hydrocarbons. The doping of Ni2+ was aimed at the optimization of initial permeability and magnetic losses. Ni0.5+xZn0.5‐xFe2O4 (x = 0.3) samples sintered at 950°C presented highest initial permeability (106.23) and low magnetic loss (0.0002) as compared to other samples. Due to better magnetic properties, Ni0.5+xZn0.5‐xFe2O4 (x = 0.3) samples were used as magnetic feeders for EM antenna. Magnitude of EM waves from the antenna increased up to 186%.  相似文献   

6.
Nano sized polycrystalline soft ferrite particles with composition Cu1−xCoxFe2O4 (x =0.1, 0.3, 0.5, 0.7, 0.9) were synthesized by the sol–gel technique. The existence of well-defined single cubic spinel structure was confirmed in all the samples by X-ray diffraction. The crystallite size found by XRD varied from 14.8 to 34.0 nm. The microstructure was also characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Slight expansion of the unit cell was detected with the increase of Cobalt concentration, which may be attributed due to larger ionic radius of Co2+. Lattice parameter ranged from 8.34 Å to 8.37 Å for Co2+ from 0.1–0.9. The distribution of cations amongst A- and B-sites of the lattice was estimated by X-ray diffraction by using the R-factor technique. The results showed that both Cu2+ and Co2+ ions occupy mainly the B-site while Fe3+ ions were equally distributed among A- and B-sites. The data obtained from cation distribution analysis was used to determine the magnetic moment for each sample and VSM studies were also carried out to validate these calculations. Magnetic measurements showed that the saturation magnetization (Ms) and coercivity (Hc) increased with increasing cobalt content.  相似文献   

7.
《Ceramics International》2015,41(7):8623-8629
Samarium doped Mn–Zn ferrite nanoparticles of composition Mn0.5Zn0.5SmxFe2−xO4 (0≤x≤0.5) have been synthesized by a chemical co-precipitation method for developing low Curie temperature stable ferrofluid. These samples were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Electron Paramagnetic Resonance (EPR) spectroscopy and search coil method analytical techniques for their structural, morphological and magnetic properties. X-ray diffraction patterns confirmed the formation of crystalline single spinel phase of as grown nanoparticles. Lattice parameter and lattice strain increases with the increase in Sm3+ content. SEM images revealed the presence of ultrafine particles and their agglomerated structures in higher Sm3+ ions concentration analogues. The stoichiometry of the final product agreed well with the initial substitution composition as evidenced by EDS data. Electron paramagnetic resonance (EPR) spectra proved the ferromagnetic nature of nanoparticles. The magnetic measurements by search coil method showed superparamagnetism for x=0, 0.1 the samples with saturation magnetization of 23.95 emu/g for Mn0.5Zn0.5Fe2O4 sample which increases with rise in Sm3+ ions content. The results are explained and correlated with the structural, morphological and magnetic properties for developing stable kerosene based ferrofluid by using these nanoparticles.  相似文献   

8.
Rare‐earth (RE) titanate pyrochlore with perovskite‐layered structure is a well‐known engineering material in applied in many field. In this work, a red‐emitting phosphor of Gd2?xNaxTi2?2xSb2xO7:Eu3+ (x = 0‐0.5) was developed via cation substitutions of (Sb5+→Ti4+) and (Na+→Gd3+) in Gd2Ti2O7. The motivation is based on the fact that the introduction of cation‐disorders has been regarded to be an effective approach for improving the luminescent efficiency and thermal stability of RE‐activated materials. All the samples were synthesized via facile solid‐state reaction method. The morphology properties were measured via SEM and EDS measurements. The structural Rietveld refinement was performed to investigate the microstructure in pyrochlore lattices. The luminescence properties of Gd2?xNaxTi2?2xSb2xO7:0.15Eu3+ (x = 0‐0.5) has a strict dependence on the cation substitution levels. The band energy of Gd2Ti2O7 is 2.9 eV with a direct transition nature. The incorporation of Sb5+ and Na+ in the lattices moves the optical absorption to a longer wavelength. The cation disorder results in significant improvements of luminescence intensity, excitation efficiency in the blue region, longer emission lifetime and thermal stability.  相似文献   

9.
Adjusting the elemental composition of a host is regarded to be an effective strategy to tune its luminescent properties such as peak energy, emission efficiency, and bandwidth. In this work, the cation substitution of (Ba2+ → Sr2+) in self‐activated Sr6V2O11 was conducted to investigate the luminescence modification. All the phosphors of Sr6‐6xBa6xV2O11 (= 0, 0.1, 0.2, 0.3, 0.4, 0.5) were synthesized by the traditional chemical sol‐gel method. The morphological properties were measured through scanning electron microscope and energy dispersive spectrum measurements. The cation substitution brings out the disorder in the structure, which exerts modifications on the luminescence properties of Sr6V2O11. The luminescence intensity and corresponding decay lifetime were enhanced with the cation disorder in the self‐activated phosphor. Cation disorder in a phosphor lattice could be one of the effective approaches to improve the luminescence efficiency.  相似文献   

10.
《Ceramics International》2017,43(11):7984-7991
Co-precipitated and 800 °C heat treated Ni-Cu-Zn nanoferrites with chemical formula NixCu0.1Zn0.9-xFe2O4 (x=0.5, 0.6, 0.7) were prepared because of their potential use as multilayer chip inductors in electromagnetic applications. Their structural, magnetic properties and phase formation were studied using X-ray diffractometer (XRD), field emission scanning electron microscope (FE–SEM), vibrating sample magnetometer (VSM), Mössbauer spectrometer, thermogravimetric analyzer (TGA) and differential scanning calorimeter (DSC). The XRD patterns confirm the cubic spinel structure of the ferrite phase belonging to Fd3m space group. Lattice parameters and cation distributions were obtained by Rietveld refinement of the XRD patterns. The lattice parameter decreases with increase in Ni2+ ion concentration. Rietveld analysis indicates that Cu2+ ions predominantly occupy the B-sites and Ni2+ ions partly going into B-sites but predominantly into A-sites. An excellent agreement is observed between the experimental lattice parameters and lattice parameters theoretically calculated using this cation redistribution. The inversion parameter (λ) observed for Fe3+ ions by Mössbauer spectroscopy is different from that of Rietveld analysis. Magnetization and Mössbauer spectroscopic measurements indicate that the ferrite nanoparticles are mostly superparamagnetic. The cation redistribution is supposed to alter the magnetocrystalline anisotropy which in turn affects the magnetic parameters of the present ferrite samples. The reduced magnetization is attributed to core-shell interactions and possible canting of A- and B-shell magnetizations. TGA-DSC studies indicate that ferrite formation in the 800 °C heat treated samples is completed but grain growth increases as the particles are subject to the increased temperature.  相似文献   

11.
Synthesis of a new magnetoelectric [(1?x)(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3xCoFe2O4] (weight fraction x=0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1) ceramic particulate composites with its structural characterization and magneto‐electric properties have been reported here in this study. Lead free piezoelectric (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 (BCZT) and ferrimagnetic CoFe2O4 (CFO) were synthesized using sol‐gel and combustion methods respectively. (1?x)BCZT‐xCFO magnetoelectric composites were then synthesized by mixing of the calcined individual ferroic phases with required weight fractions. Powder X‐ray diffraction studies indicate the coexistence of BCZT and CFO phases in the composites sintered at 1300°C. 0.5BCZT‐0.5CFO composite showed high strain sensitivity (dλ/dH) of 52×10?9 Oe?1, which is comparable to that of pure CFO (50×10?9 Oe?1). A high piezoelectric voltage constant (g33) of 8×10?3 V m/N was measured for 0.8BCZT‐0.2CFO sample. All the composites showed magnetoelectric effect and a high magnetoelectric coupling coefficient (αME) of 6.85 mV/cm Oe was measured for 0.5BCZT‐0.5CFO composite at 1 kHz and a large ME coefficient of 115 mV/cm Oe at its resonance frequency. The effect of microstructure on the magnetoelectric properties of [(1?x)BCZT‐(x)CFO] composites has been studied and reported here as a function of its piezoelectric (BCZT)/ferrite (CoFe2O4) content.  相似文献   

12.
Multiferroic Bi1?xLaxFeO3 [BLFO (x)] ceramics with x = 0.10–0.50 and Mn‐doped BLFO (x = 0.30) ceramics with different doping contents (0.1–1.0 mol%) were prepared by solid‐state reaction method. They were crystallized in a perovskite phase with rhombohedral symmetry. In the BLFO (x) system, a composition (x)‐driven structural transformation (R3cC222) was observed at x = 0.30. The formation of Bi2Fe4O9 impure phase was effectively suppressed with increasing the x value, and the rhombohedral distortion in the BLFO ceramics was decreased, leading to some Raman active modes disappeared. A significant red frequency shift (~13 cm?1) of the Raman mode of 232 cm?1 in the BLFO ceramics was observed, which strongly perceived a significant destabilization in the octahedral oxygen chains, and in turn affected the local FeO6 octahedral environment. In the Mn‐doped BLFO (x = 0.30) ceramics, the intensity of the Raman mode near 628 cm?1 was increased with increasing the Mn‐doping content, which was resulted from an enhanced local Jahn–Teller distortions of the (Mn,Fe)O6 octahedra. Electron microscopy images revealed some changes in the ceramic grain sizes and their morphologies in the Mn‐doped samples at different contents. Wedge‐shaped 71° ferroelectric domains with domain walls lying on the {110} planes were observed in the BLFO (x = 0.30) ceramics, whereas in the 1.0 mol% Mn‐doped BLFO (x = 0.30) samples, 71° ferroelectric domains exhibited a parallel band‐shaped morphology with average domain width of 95 nm. Dielectric studies revealed that high dielectric loss of the BLFO (x = 0.30) ceramics was drastically reduced from 0.8 to 0.01 (measured @ 104 Hz) via 1.0 mol% Mn‐doping. The underlying mechanisms can be understood by a charge disproportion between the Mn4+ and Fe2+ in the Mn‐doped samples, where a reaction of Mn4+ + Fe2+→Mn3+ + Fe3+ is taken place, resulting in the reduction in the oxygen vacancies and a suppression of the electron hopping from Fe3+ to Fe2+ ions effectively.  相似文献   

13.
While the reddish‐orange emitting phosphors M2Si5N8:Eu2+(M = Ca, Sr) have been intensively investigated as potential materials for white‐light‐emitting diodes, in this study, optical energy storage properties of (Ca1?xSrx)2Si5N8: Eu2+, Tm3+ (x = 0–1) solid solutions were tuned by cation substitution, which was commonly used to tune color point for improving w‐LEDs. Partial substitution of either Ca by Sr or Sr by Ca resulted in a redshifted Eu2+ emission which had a demarcation point at x = 0.5. Furthermore, the (Ca1?xSrx)2Si5N8: Eu2+, Tm3+ materials exhibited similar persistent‐ and photostimulated luminescence behaviors with a maximum intensity at about x = 0.2. Such optical energy storage characters of the samples were attributed to the more appropriate trap depths (322–333 K) and higher density of energy level traps indicated by the thermoluminescence analysis.  相似文献   

14.
We synthesized soft magnetic spinel ferrite ZnMg-ferrite (Zn1?xMgxFe2O4, where x=0.0, 0.1, 0.2, 0.3, 0.4, and 0.5) nanoparticles using the co-precipitation method. Structural and magnetic properties have been studied in detail. XRD revealed that the structure of these nanoparticles is spinel with crystallite size lies in the range 21–31 nm. Lattice parameter decreases with increasing Mg concentration due to the smaller ionic radius of the Mg2+ ion. FTIR spectroscopy also confirmed the formation of spinel ferrite by showing the characteristic absorption bands at 420 cm?1 and 545 cm?1. Vibrational band of metal ion at tetrahedral site (Mtet.) with oxygen ions (O–Mtet.–O) is shifted toward higher wave numbers with the increase of Mg concentration. The magnetization showed an increasing trend with increasing Mg concentration due to the rearrangement of cations at tetrahedral and octahedral sites, while the corecivity remained constant due to the soft nature of the ferrite composition. Both structural and magnetic properties of ZnMg-ferrite nanoparticles strongly depend upon Mg2+ cation doping percentage.  相似文献   

15.
With the objective of incorporating some divalent transition‐metal ions in thoria and to comprehend its effect on the crystal structure, electronic as well as catalytic properties, Ni2+, Cu2+ and Cd2+ substituted thoria samples were synthesized by the epoxide gel method. Of the two concentrations investigated, 10 mol% of Ni2+, Cu2+, and Cd2+ could be substituted retaining the fluorite structure and phase separation into individual oxides was noticed for 15 mol%. The average crystallite size of thoria and 10 mol% substituted samples was 14 nm. Le‐Bail structural refinements of Powder X‐ray diffraction (PXRD) patterns indicated marginal increase in unit cell constant for the Cd2+ substituted sample and a decrease for Ni2+ and Cu2+ substituted samples. In addition to broadening of the band at around 460 cm?1 (F2g vibration of the fluorite), less intense band near 560‐590 cm?1 emerged for all the transition‐metal ion‐containing samples in the Raman spectra implying the formation of oxygen defects. The absorption edge in the UV‐visible spectra moved toward higher wavelength for Cd2+, Ni2+ and Cu2+ containing samples as compared to pure thoria. In addition, d‐d transition was observable for Ni2+ and Cu2+ containing samples. By virtue of these changes in the electronic structure of transition‐metal ion‐containing samples, they were examined as catalysts for the degradation of aqueous Rhodamine‐6G (Rh‐6G) dye solutions under visible radiation.  相似文献   

16.
Quaternary Ni1-xCuxFe2-yCeyO4 complex nano-ferrites system with different cerium content ratio and copper substitution degree were synthesized via co-precipitation wet chemical technique. The newly obtained nanoparticles, with general formula Ni1-xCuxFe2-yCeyO4 (where x = 0.0, 0.3, 0.6 and y = 0.00, 0.03, 0.05, 0.08 and 0.10) were heated up to 600 °C to stabilize the specific crystalline spinel structure. The limit of cerium content was quantitively determined to be around 0.08 and up to 0.10. Furthermore, the powders were pelletized in a 13 mm wide pellets and thermally treated at 950 °C. The thermal treatment affected even more the phases segregation process, as CeO2 was identified in the sample with lowest degree of cerium insertion – 0.03. Also, a difference in color and size of pelletized samples was noticed after the 950 °C thermal treatment. The Rietveld refinement, crystal structure confirmation, morphology magnetic and electrical properties of samples have been deeply studied. The cation distribution carried out from Rietveld refinement confirms the occupancy of (Fe3+) on tetrahedral sites and [Ni2+], [Cu2+], [Fe3+] and [Ce2+] on octahedral sites in the crystal lattice. Preliminary information regarding the cation distribution in spinel structures were suggested by FTIR spectral results, precisely in the 650-520 cm?1 region, as a consequence of peak shape and lack of shiftiness of MTd – O bond. Spherical-shaped quaternary nano-ferrites of 17–28 nm were determined from FE-SEM analysis and the samples composition was confirmed by EDX analysis. Hysteresis loops shows modifications in coercivity, magnetization and magnetic remanence with Ni2+ and Cu2+ ions doping in Ni1-xCuxFe2-yCeyO4 complex systems with typical ferrimagnetic behavior. Dielectric measurements were employed in order to determine the electrical permittivity, dielectric losses and conductivity values in a 10 Hz – 1 MHz frequency range.  相似文献   

17.
Lead‐free 0.77(Bi0.5Na0.5)TiO3–0.23Sr(Ti1?xFex)O3 (= 0, 0.04) (BNT–23STFx) was prepared using a conventional solid‐state reaction route. The effects of Fe‐modification on the chemical homogeneity from a μm scale perspective, the core‐shell domains structures, and the ferroelectric properties were investigated. The chemical homogeneity was analyzed using energy dispersive X‐ray mapping in scanning transmission electron microscopy mode, and the field‐dependent behaviors of strain and polarization were obtained to determine the ferroelectric properties. Substituting Fe3+ for Ti4+ resulted in completely different electrical behavior and properties, despite similar XRD patterns and microstructures. The Fe‐substitution promoted the mobility of Sr2+ ions in the BNT phase and, as a consequence, the chemical homogeneity increased and the core‐domains collapsed. Extending the ceramic processing, such as milling time and sintering time, affected domain distribution and compositional inhomogeneity, which led to a gradual transformation from ferroelectric to relaxor.  相似文献   

18.
Barium‐substituted CsAlSi2O6 pollucites, CsxBa(1?x)/2AlSi2O6, and barium‐ and iron‐substituted pollucites, CsxBa(1?x)/2AlxFe1?xSi2O6 and CsxBa1?xAlxFe1?xSi2O6 were synthesized with 1 ≥ x≥ 0.7 using a hydrothermal synthesis procedure. Rietveld analysis of X‐ray diffraction data confirmed the substitution of Ba for Cs and Fe for Al, respectively. The crystallographic analysis also describes the effects of three different types of pollucite substitutions on the pollucite unit cell: Ba2+ for Cs1+ cation results in little effect on cell dimensions, intermediate concentrations of Ba2+ and Fe3+ substitution result in net minor expansion due to Fe3+ addition, and large Ba and Fe substitutions result in overall framework contraction. Elemental analysis combined with microscopy further supports the phase purity of these new phases. These materials can be used to study the stability of CsAlSi2O6 as a durable ceramic waste form, which could accommodate with time Cs and its decay product, Ba. Furthermore, success in iron substitution for aluminum into the pollucite lattice predicts that redox charge compensation for Cs cation decay is possible.  相似文献   

19.
《Ceramics International》2020,46(10):16196-16209
In this study, pure cobalt ferrite (CoFe2O4) nanoparticles and europium doped CoFe2O4 (CoFe2−xEuxO4; x = 0.1, 0.2, 0.3) nanoparticles were synthesized by the precipitation and hydrothermal approach. The impact of replacing trivalent iron (Fe3+) ions by trivalent rare earth europium (RE-Eu3+) ions on the microstructure, optical and magnetic properties of the produced CoFe2O4 nanoparticles was studied. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectra exposed the consistency of a single cubic phase with the evidence of Eu2O3 phases for x ≥ 0.2. FTIR transmittance spectra showed that, the all investigated samples have three characteristic metal-oxygen bond vibrations corresponding to octahedral B-site (υ1 and υ2) and tetrahedral A-site (υ3) around 415 cm−1, 470 cm−1 and 600 cm−1 respectively. XRD and energy dispersive X-ray spectroscopy studies affirmed the integration of RE-Eu3+ ions within CoFe2O4 host lattice and decrease of average crystals size from 13.7 nm to 4.7 nm. Transmission electron microscopy (TEM) analysis showed the crucial role played by RE-Eu3+ added to CoFe2O4 in reducing the particle size below 5 nm in agreement with XRD analysis. High resolution-TEM (HR-TEM) analysis showed that the as-synthesized spinel ferrite, i.e., CoFe2−xEuxO4, nanoparticles are single-crystalline with no visible defects. In addition, the HR-TEM results showed that pure and doped CoFe2O4 have well-resolved lattice fringes and their interplanar spacings matches that obtained by XRD analysis. Magnetic properties investigated by the vibrating sample magnetometer technique illustrated transformation of magnetic state from ferromagnetic to superparamagnetic at 300 K resulting in introducing RE-Eu3+ in CoFe2O4 lattice. At low temperature (~5 K) the magnetic order was ferromagnetic for both pure and doped CoFe2O4 samples. Substitution of Fe3+ ions in CoFe2O4 nanoparticles with RE-Eu3+ ions optimizes the sample nanocrystals size, cation distribution and magnetic properties for many applications.  相似文献   

20.
Zn‐Cr‐co‐substituted Cu1‐xZnxFe2‐2xCr2xO4 ferrites (where x = 0.0–0.5) were prepared via thermal decomposition of oxalate precursors. The thermal decomposition up to ferrites formation was followed by differential thermal analysis–thermogravimetry measurements. Mössbauer technique was used to predict the possible cation distribution of the entire system, and X‐ray diffraction, Fourier transform infrared, and electromagnetic measurements were used for confirmation. The superparamagnetic characteristics estimated via Mössbauer studies, for samples with higher substitution, agreed well with vibrating sample magnetometer, magnetic susceptibility, and conductivity results. All the samples showed semiconducting properties in which conductivity decreases by increasing substitution. The effect of cationic substitution on the entire system was investigated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号