首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electro‐sintering, i.e., electrically enhanced densification without the assistance of Joule heating, has been observed in 70% dense 8 mol% Y2O3‐stabilized ZrO2 ceramics at temperatures well below those for conventional sintering. Remarkably, full density can be obtained without grain growth under a wide range of conditions, including those standard for solid oxide fuel cell (SOFS) and solid oxide electrolysis cell (SOEC), such as 840°C with 0.15 A/cm2. Microstructure evidence and scaling analysis suggest that electro‐sintering is aided by electro‐migration of pores, made possible by surface flow of cations across the pore meeting lattice/grain‐boundary counter flow of O2?. This allows pore removal from the anode/air interface and densification at unprecedentedly low temperatures. Shrinkage cracking caused by electro‐sintering of residual pores is envisioned as a potential damage mechanism in SOFC/SOEC 8YSZ membranes.  相似文献   

2.
Foam glasses are usually prepared through a chemical approach, that is, by mixing glass powder with foaming agents, and heating the mixture to a temperature above the softening point (106.6 Pa s) of the glass. The foaming agents release gas, enabling expansion of the sintered glass. Here, we use a physical foaming approach to prepare foam glass. First, closed pores filled with inert gases (He, Ar, or N2) are physically introduced into a glass body by sintering cathode ray tube (CRT) panel glass powder at high gas pressure (5‐25 MPa) at 640°C and, then cooled to room temperature. The sintered bodies are subjected to a second heat treatment above the glass transition temperature at atmospheric pressure. This heat treatment causes expansion of the pores due to high internal gas pressure. We found that the foaming ability strongly depends on the gas pressure applied during sintering, and on the kinetic diameters of the gases. The pressure for attaining maximum expansion, that is, lowest density and highest porosity, is found to be around 20 MPa.  相似文献   

3.
In BaTiO3, flash‐sintering associated with a surge of the specimen electric current sometimes results in an inhomogeneous microstructure including Ti‐excess secondary phases because of discharging. We applied field‐assisted sintering technique (FAST) under precisely controlled specimen current that was set just below the threshold value for the occurrence of flash event for BaTiO3, to avoid the occurrence of the discharging. As a result, uniform and fine‐grained compacts were obtained without any secondary phases. A relative density of approximately 92% was achieved under FAST condition of 100 V/cm with a limiting current of 72 mA and soaking time of 3 hours at 1070°C. The voltages during sintering under a constant current of 72 mA were found to decrease during the soaking process. Electron energy loss spectroscopy revealed the generation of excess oxygen vacancies at/near grain boundaries. The excess oxygen vacancies induced by application of DC electric fields were confirmed to reduce the voltages and to retard the shrinkage rate in a final sintering stage.  相似文献   

4.
During high‐temperature crystal growth, lattice defects will inevitably form inside piezoelectric materials, which can be a hindrance for performance optimization. Through appropriate atmosphere control during sintering, defect levels inside the piezoelectric material can be regulated. Herein, CaZrO3‐modified (K, Na)NbO3‐based lead‐free piezoelectric ceramics with a nominal composition of 0.95(Na0.49K0.49Li0.02)(Nb0.8Ta0.2)O3‐0.05CaZrO3 are produced by sintering in an oxygen‐rich atmosphere. Compared with an air‐sintered sample, the piezoelectric constant of the oxygen‐sintered sample has greatly improved 15% up to 390 pC/N, which is comparable to commercial lead‐based counterparts. In addition, the planar electromechanical coupling factor kp is enhanced from 0.46 to 0.52. A qualitative model related to defect engineering is proposed to support the experimental observations. Our results indicate the feasibility of purposely optimizing the piezoelectric performance by sintering atmosphere control.  相似文献   

5.
Compatibility of Bi‐based piezoelectric ceramic and copper electrodes is demonstrated by co‐firing 0.88Bi1/2Na1/2TiO3–0.08Bi1/2K1/2TiO3–0.04BaTiO3 (BNKBT88) with copper. A combination of Bi2O3, CuO, ZnO, Li2CO3, and B2O3 are used as additives to reduce firing temperature to 900°C with minimal effect on the electromechanical properties compared to sintering at 1150°C without additives. Co‐firing with copper electrodes requires controlled oxygen sintering at low temperature. The atmosphere is controlled using carbon dioxide and hydrogen gas to maintain an oxygen partial pressure of 6.1 × 10?8 atm, which is necessary for the coexistence of Cu metal and Bi2O3. The thermodynamic activity of bismuth oxide in BNKBT88 is calculated to be 0.38. BNKBT88 ceramics were successfully co‐fired with internal as well as surface Cu metal electrodes. The copper co‐fired ceramics were successfully polarized and the dielectric and piezoelectric properties are evaluated.  相似文献   

6.
CO, H2, and CO2 are major components of syngas and some industrial CO‐rich waste gases (e.g. waste gases from steel industries), besides some additional minor compounds. It was recently shown that those gases can be bioconverted, by acetogenic/solventogenic bacteria, into ethanol and higher alcohols such as butanol, but also hexanol, through the so‐called HBE fermentation. That process presents some advantages over existing chemical conversion processes. This paper reviews HBE fermentation from C1‐gases after briefly describing the more conventional ABE (acetone‐butanol‐ethanol) fermentation from carbohydrates by Clostridium acetobutylicum, in order to allow for comparison of both processes. Although acetone may appear in carbohydrate fermentation, alcohols are the only major end‐metabolites in the HBE process with Clostridium carboxidivorans. The few acetogenic bacteria known to metabolize C1‐gases and produce butanol or higher alcohols are described. Clostridium carboxidivorans has been used in most cases. Bioconversion of the gaseous substrates takes place in two stages, namely acidogenesis (production of acids) followed by solventogenesis (production of alcohols), characterized by different optimal fermentation conditions. Major parameters affecting each bioconversion stage as well as the overall fermentation process are analyzed. Although it has been claimed that acidification is required in ABE fermentation to initiate the solventogenic stage, strong acidification seems to some extent not to be a prerequisite for solventogenesis in the HBE process. Bioreactors potentially suitable for this type of bioconversion process are described as well. © 2017 Society of Chemical Industry  相似文献   

7.
This study has presented synthesis, characterization, and formation mechanism of a kind of novel porous zircon with desert rose‐shaped morphology, which was hydrothermally fabricated by a two‐step quasi‐in situ reaction in a system of silica hydrogel and well‐dispersed ZrO2 precursor microspheres. The micro–mesoporous zircon product possesses a sole crystalline phase of hydroxyl‐fluorinated ZrSiO4 without unreacted ZrO2 or SiO2 in the final resultant. It has a specific surface area exceeding 120 m2/g and can maintain more than 50% micro‐mesoporic pores after calcination at 800°C due to its magnificent thermal stability. A four‐stage formation mechanism has been proposed to elucidate the process of quasi‐in situ crystallization and growth for the rose‐shaped zircon.  相似文献   

8.
《Ceramics International》2017,43(5):4638-4646
The gas-releasing reaction is the most important process in the preparation of foam glass. In this paper we investigated the gas-releasing reactions by means of thermogravimetry coupled with mass spectrometry. We used carbon (activated charcoal and carbon black) and/or manganese oxides (MnO2, Mn2O3, and Mn3O4) as the foaming additives. We show that manganese oxides have different functions in the foaming process. The thermal decomposition of MnO2 below the sintering temperature has a negative impact on the foaming process as it shifts the foaming to higher temperatures, increases the mass-loss rate, leading to open pores, and burns out the carbon. When foaming in an oxidizing atmosphere, the carbon is burnt out by the oxygen from the atmosphere. Instead, Mn2O3 can be used as the foaming agent in an oxidizing atmosphere. In the oxygen-free atmosphere, Mn3O4 can be used as the oxidizing agent, supporting the oxidation of carbon and the foaming process. The redox equilibrium of manganese (Mn2+/Mn3+), influenced by the oxygen partial pressure in the pores and physically dissolved oxygen in the glass, shows the strongest influence on the foaming process. The CO/CO2 ratio in the evolved gases depends on the carbon source and the temperature.  相似文献   

9.
BACKGROUND: The metal dispersed over a support can be present as small crystallites with sizes less than 5 nm. The smaller crystallites favour aromatization while larger crystallites favour cracking/hydrogenolysis. Sintering results in the agglomerization of smaller metal crystallites. Correlation of size with aromatization selectivity was investigated. RESULTS: The primary products of n‐heptane reforming on fresh Pt were methane, toluene, and benzene, while on fresh Pt‐Re, the only product was methane. Both catalysts exhibited enhanced aromatization selectivity at different oxygen sintering temperatures. The reaction products ranged from only toluene at 500 °C sintering temperature to methane at a sintering temperature of 650 °C with no reaction at 800 °C for the Pt/Al2O3 catalyst. On Pt‐Re/Al2O3 catalyst, methane was the sole product at a sintering temperature of 500 °C while only toluene was produced at a sintering temperature of 800 °C. CONCLUSION: This is the first time that sintering has been used to facilitate aromatization of supported Pt and Pt‐Re catalysts. A superior selectivity behaviour associated with bi‐metallic Pt catalysts is established. It was found that no reaction occurred on Pt catalyst after sintering at 800 °C whereas sintering Pt‐Re at 800 °C promoted aromatization solely to toluene. Copyright © 2008 Society of Chemical Industry  相似文献   

10.
The sharp loss‐in‐capacity in CO2 capture as a result of sintering is a major drawback for CaO‐based sorbents used in the calcium looping process. The decoration of inert supports effectively stabilizes the cyclic CO2 capture performance of CaO‐based sorbents via sintering mitigation. A range of Al‐decorated and Al/Mg co‐decorated CaO‐based sorbents were synthesized via an easily scaled‐up spray‐drying route. The decoration of Al‐based and Al/Mg‐based supports efficiently enhanced the cyclic CO2 capture capability of CaO‐based sorbents under severe testing conditions. The CO2 capture capacity losses of Al‐decorated and Al/Mg co‐decorated CaO‐based sorbents were alleviated, representing more stable CO2 capture performance. The stabilized CO2 capture performance is mainly attributed to the formation of Ca12Al14O33, MgAl2O4, and MgO that act as the skeleton structures to mitigate the sintering of CaCO3 during carbonation/calcination cycles.  相似文献   

11.
The reducibility of synthesized ceria‐stabilized zirconia (CSZ) with strong shock‐heated test gases is investigated. Free piston‐driven shock tube operating at hypersonic speed at Mach number of 6–8 has been used to heat the ultrahigh pure test gases like Ar to ~12800 K, N2 to ~7960 K, and O2 to ~5500 K at a medium reflected shock pressure (5.0–7.4 MPa) for a short duration of 1–2 ms test time. Under this extreme thermodynamic condition, test gases undergo real gas effects. The structural and spectroscopic investigations of CSZ (Ce2Zr2O8) after interaction with shock‐heated argon gas show pyrochlore structure of Ce2Zr2O7?δ which is observed to be black in color. In presence of shock‐heated N2 gas, CSZ remains in fluorite structure by changing its color to pale green as nitrogen atoms fill oxygen vacancies. After O2 interaction with the shock wave, CSZ remains pale yellow but the X‐ray diffraction pattern shows the presence of monoclinic ZrO2 due to phase separation. During reduction process, Ce4+ has been reduced to Ce3+ which is an unusual effect. In this study, the catalytic and surface recombination effects of CSZ due to shock‐induced compression in millisecond timescale are presented.  相似文献   

12.
Microcellular polymeric foam structures have been generated using a pressure‐induced phase separation in concentrated mixtures of supercritical CO2 and styrene‐co‐acrylonitrile (SAN). The process typically generates a microcellular core structure encased by a non‐porous skin. Pore growth occurs through two mechanisms: diffusion of CO2 from polymer‐rich regions into the pores and also through CO2 gas expansion. The effects of saturation pressure, temperature and swelling time on the cell size, cell density and bulk density of the porous materials have been studied. Higher CO2 pressures (hence, higher fluid density) provided more CO2 molecules for foaming, generated lower interfacial tension and viscosity in the polymer matrix, and thus produced lower cell size but higher cell densities. This trend was similar to what was observed in swelling time series. While the average cell size increased with increasing temperature, the cell density decreased. The trend of bulk density was similar to that of cell size. © 2000 Society of Chemical Industry  相似文献   

13.
ABSTRACT

A novel high closed porosity Al2O3-MgAl2O4 refractory aggregate has been successfully fabricated by utilising superplasticity with Al2O3 and MgO as raw materials, SiC as high temperature pore-forming agent. The effects of the addition amounts of MgO and SiC on porosity, sintering behaviours, phase composition, pore size distribution and microstructure of the refractory aggregate have been investigated. The formation mechanism of the closed pore in the refractory aggregate has been discussed. The results showed that the MgO can improve the superplastic deformation ability of Al2O3-based ceramic at high temperature. With the content of MgO and SiC increased, the closed porosity and the pore size increased. The oxidation of SiC improved the sinterability of materials at the initial stage of sintering, and then the released gases due to the further oxidation of SiC promoted the formation of closed pores by motivating the superplastic deformation ability of Al2O3-based materials.  相似文献   

14.
A multichannel mixed‐conducting hollow fiber (MMCHF) membrane, 0.5 wt % Nb2O5‐doped SrCo0.8 Fe0.2O3‐δ (SCFNb), has been successfully prepared by phase inversion and sintering technique. The crystalline structure, morphology, sintering behavior, breaking load, and oxygen permeability of the MMCHF membrane were studied systematically. The MMCHF membrane with porous‐dense asymmetrical microstructure was obtained with the outer diameter of 2.46 mm and inner tetra‐bore diameter of 0.80 mm. The breaking load of the MMCHF membrane was 3–6 times that of conventional single‐channel mixed‐conducting hollow fiber membrane. The MMCHF membrane showed a high oxygen flux which was about two times that of symmetric capillary membrane at similar conditions as well as a good long‐term stability under low oxygen partial pressure atmosphere. This work proposed a new configuration for the mixed‐conducting membranes, combining advantages of multichannel tubular membrane technology and conventional hollow fibers. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1969–1976, 2014  相似文献   

15.
This paper studies the process of relaxation of a polymer after swelling in supercritical carbon dioxide. Polyhexafluoropropylene (PHFP) was chosen as the object for investigation. The relaxation process was monitored by a change of the permeability coefficients for a number of gases. Thin polymeric films of PHFP were modified by different treatments: drying to a constant weight, annealing at a temperature slightly higher than the glass‐transition temperature, and swelling in supercritical carbon dioxide. The permeability coefficients of six gases, He, H2, O2 N2, CO2, and CH4, were measured after each stage of the treatment. It was shown that the permeability coefficients in the films were increased by 2.4 times for He, 3.6 for H2, 5.9 for O2, 8.1 for N2, 6.7 for CO2, and 10.9 for methane. The permeability coefficients of the same gases were measured 50 days later after swelling in supercritical carbon dioxide. A decrease in the permeability coefficient demonstrated that the relaxation process had taken place. Nevertheless, the values exceeded the initial ones for annealed samples by 2.0 times for He, 2.4 for H2, 1.8 for O2, 1.7 for N2, 1.7 for CO2, and 1.3 for methane. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43105.  相似文献   

16.
Carbon–carbon (C–C) composites are ideal for use as aerospace vehicle structural materials; however, they lack high‐temperature oxidation resistance requiring environmental barrier coatings for application. Ultra high‐temperature ceramics (UHTCs) form oxides that inhibit oxygen diffusion at high temperature are candidate thermal protection system materials at temperatures >1600°C. Oxidation protection for C–C composites can be achieved by duplicating the self‐generating oxide chemistry of bulk UHTCs formed by a “composite effect” upon oxidation of ZrB2–SiC composite fillers. Dynamic Nonequilibrium Thermogravimetric Analysis (DNE‐TGA) is used to evaluate oxidation in situ mass changes, isothermally at 1600°C. Pure SiC‐based fillers are ineffective at protecting C–C from oxidation, whereas ZrB2–SiC filled C–C composites retain up to 90% initial mass. B2O3 in SiO2 scale reduces initial viscosity of self‐generating coating, allowing oxide layer to spread across C–C surface, forming a protective oxide layer. Formation of a ZrO2–SiO2 glass‐ceramic coating on C–C composite is believed to be responsible for enhanced oxidation protection. The glass‐ceramic coating compares to bulk monolithic ZrB2–SiC ceramic oxide scale formed during DNE‐TGA where a comparable glass‐ceramic chemistry and surface layer forms, limiting oxygen diffusion.  相似文献   

17.
Highly transparent Eu‐doped Pb(Mg1/3Nb2/3)O3–PbTiO3(PMN‐PT) ferroelectric ceramics were obtained by a two‐stage sintering method. Eu doping play a significant role in the domain structures of PMN‐PT ceramics and resulted in different light scattering responses under electric field. The dielectric behaviors, ferroelectric properties, and domain configurations in the ceramics with increasing Eu doping concentration were studied, which were consistent with the electric field‐induced light scattering responses.  相似文献   

18.
A platinum/alumina catalyst was sintered in oxygen and hydrogen atmospheres using two metal loadings of the catalyst: 0.3% Pt and 0.6% Pt. After sintering, the aromatization selectivity was investigated with the reforming of n‐heptane as the model reaction at a temperature of 500 °C and a pressure of 391.8 kPa. The primary products of n‐heptane reforming on the fresh platinum catalysts were methane and toluene, with subsequent conversion of benzene from toluene demethylation. To induce sintering, the catalysts were treated with oxygen at a flow rate of 60 mL min?1, pressure of 195.9 kPa and temperatures between 500 and 800 °C. The 0.3% Pt/Al2O3 catalyst exhibited enhanced aromatization selectivity at various sintering temperatures while the 0.6% Pt/Al2O3 catalyst was inherently hydrogenolytic. The fact that aromatization was absent on the 0.6% Pt/Al2O3 catalyst was attributed to the presence of surface structures with dimensionality between two and three as opposed to essentially 2‐D structures on the 0.3% Pt/Al2O3 catalyst surface. On the 0.3% Pt/Al2O3 catalyst, the reaction product ranged from only toluene at a 500 °C sintering temperature to predominantly cracked product at a sintering temperature of 650 °C and no reaction at 800 °C. For sintering at about 650 °C, subsequent conversion of n‐heptane was complete and dropped thereafter. The turnover number was observed to change from 0.07 to 2.26 s?1 as the dispersion changed from 0.33 to 0.09. The Koros–Nowark (K–N) test was used to check for the presence of internal diffusional incursions and Boudart's criterion was used for structural sensitivity determination. The K–N test indicated the absence of diffusional resistances while n‐heptane reforming was found to be structure sensitive on the Pt/Al2O3 catalyst. Copyright © 2006 Society of Chemical Industry  相似文献   

19.
Hydrogels, composed of poly(N‐vinyl‐2‐pyrrolidone) and crosslinked polyacrylamide, were synthesized and the release of vitamin B12 from these hydrogels was studied as a function of the degree of crosslinking and pH of the external swelling media. The three drug‐loaded hydrogel samples synthesized with different crosslinking ratios of 0.3, 0.7, and 1.2 (in mol %) follow different drug‐release mechanisms, that is, chain relaxation with zero‐order, non‐Fickian and Fickian, or diffusion‐controlled mechanisms. To establish a correlation between their swelling behavior and drug‐release mechanism, the former was studied by the weight‐gain method and, at the same time, the concentration of the drug released was studied colorimetrically. Various swelling parameters such as the swelling exponent n, gel‐characteristic constant k, penetration velocity v, and diffusion coefficient D were evaluated to reflect the quantitative aspect of the swelling behavior of these hydrogels. Finally, the drug‐release behavior of the hydrogels was explained by proposing the swelling‐dependent mechanism. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1706–1714, 2000  相似文献   

20.
In comparison to a single‐stage deammonification system, large differences of N2O emissions in double stage treatment with nitrification have been documented. Experiences are presented from pilot‐scale nitrification plants employing continuous feeding and clarification as well as sequencing‐batch reactor systems. During treatment of digestion centrate with high NH4‐N concentrations, nitrous oxide gas was identified in reactors and exhaust gases. With similar NH4 reduction, the results revealed an order of a magnitude lower N2O emissions during wastewater treatment in a single‐stage deammonification system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号