首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of BaO on the viscosity of experimental slag with the CaO/SiO2 ratio of 0.7 was studied based on the rotating cylinder method, and the structure evolution analysis was performed using Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS) and 27Al MAS-NMR spectra. The results indicated that the viscosity of molten slag decreased gradually with BaO content rising from 0 wt.% and 5 wt.% due to the dominant effect of free O2- rather than Ba2+. The viscous flow activation energy (Eη) of molten slag was calculated, presenting a similar change trend with that of viscosity. The structure analysis demonstrated that, with the increasing BaO content, the [SiO4]-tetrahedral structures and Si-O-Al bonds were destroyed due to an increase in the relative fraction of free oxygen (O2-). For the Al-related structural units, the 27Al magic angles spinning nuclear magnetic resonance (27Al MAS NMR) spectra analysis illustrated that the concentration of [AlO4] units reduced, whereas that of [AlO5] and [AlO6] units increased because of the increase of free oxygen and nonbridged oxygen (O0). The results of structure analysis agreed well with the viscosity variations of experimental slag.  相似文献   

2.
To design suitable mold fluxes for the casting of high‐Al steels, the structure of mold fluxes based on CaO–SiO2, CaO–SiO2–Al2O3, and CaO–Al2O3 was examined by Raman spectroscopy and magic‐angle spinning nuclear magnetic resonance. The results showed that Si atoms are replaced by Al atoms as the network formers with the increase in Al2O3 in the mold fluxes. This converts the silicate slags (CaO–SiO2 mold fluxes) into aluminosilicates slags (CaO–SiO2–Al2O3 or CaO–Al2O3 mold fluxes). The F? ions in the mold flux containing Al2O3 are classified into three categories, according to function: Bridging F's, Nonbridging F's, and Free‐F's. The Al3+ ion holds three distinct coordination environments: IVAl, VAl, and VIAl. The addition of F affects the coordination environment of Al3+ to form AlO3F and AlO2F2 that accommodate the network structure of slags. The network structure in the CaO–SiO2 mold fluxes is mainly connected through Si–O–Si linkage. However, the network structure of the mold fluxes containing elevated content of Al2O3 is mainly connected through Si–O–Si, Al–O–Al, Al–O–Si, and Al–F–Al linkages. Hence, the structural characteristics of high‐Al steels mold fluxes must be considered during the designing step of the mold fluxes.  相似文献   

3.
The transformation of the Si-Al microstructures of slags, which have similar SiO2 + Al2O3 and CaO contents but different SiO2/Al2O3 ratios, was quantified using multinuclear SS-NMR. Three kinds of Si Qn microstructures (Q2, Q3, and Q4), where n denotes the number of bridging oxygen linked to other Si atoms for each Q (SiO4) unit, and one Al structure (Al (IV)) were present in both slags. The Q3 percentage in two slags was increased as increase of temperature from 1200 to 1600 °C. The transformation of Si-Al microstructures was interpreted by a hypothetic model of cristobalite cluster based on the crystal and Qn structure.  相似文献   

4.
The structure of CaO–Al2O3–B2O3–BaO glassy slags with varying mass ratio of BaO to CaO has been investigated by Raman spectroscopy, 11B and 27Al magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy and atomic pair distribution function (PDF). 11B MAS-NMR spectra reveal the dominant coordination of boron as trigonal. Both simulations on 11B MAS-NMR spectra and Raman spectroscopy indicate the presence of orthoborate as the primary borate group with a few borate groups with one bridging oxygen and minor four-coordinated boron sites. 27Al MAS-NMR and PDF show the Al coordination as tetrahedral. Raman spectral study shows that the transverse vibration of AlIV–O–AlIV and AlIV–O–BIII, stretching vibration of aluminate structural units and vibration of orthoborate and pyroborate structural groups. A broader distribution of Al–O bond lengths in PDF also supports the enhanced network connectivity. Viscosity measurements show the increase in viscosity of molten slags with increasing mass ratio of BaO to CaO, which further attributes to the enhanced degree of polymerization of the aluminate network.  相似文献   

5.
The effects of basicity and amphoteric oxides (Al2O3 and FetO) on the structure–property relationships of CaO–SiO2–(Al2O3 and FetO) and CaO–SiO2–Al2O3–FetO slags were investigated to determine the constitutional effects on the structure of high-temperature ionic melts. The proportion of Qn species, which is determined by Raman spectroscopy, and the viscosity measured by the rotating cylinder method are both correlated and shown together with the slag structure index (NBO/T) concept. The NBO/T of CaO-SiO2 binary slags showed a linear relationship with basicity (CaO/SiO2), including an inflection point at CaO/SiO2 = 1.0 resulting from the stability and Qn-dominant unit of the melt, which changes close to the wollastonite (CaSiO3) congruent point. This inflection point changes with the increasing amphoteric oxide content (Al2O3 and FetO) because of the change in the dominant polymeric unit (Si4+–O–Si4+→M4+–O–Si4+; M: Al and Fe), in accordance with the equilibrated primary phases. As the Al2O3 content increased, the viscosity and activation energy of slags both drastically increased owing to the change in the flow unit (Si–O–Si, Al–O–Si, and Al–O–Al). In contrast, as FetO increased, the viscosity and activation energy (Eη) of slags decreased because of the change in the flow unit (Si–O–Si, Fe–O–Si, and Fe–O–Fe). Ultimately, the flow unit (T–O–T; T = Si, Al, and Fe) and activation energy of the slags were found to be closely related to the solid primary phase on the phase diagram, and the physical-property–structure relationship was determined from the phase stability.  相似文献   

6.
This study investigated the effect of Al2O3/SiO2 mass ratios on the equilibrium crystallization behavior of synthesized CaO–SiO2–MgO–Al2O3–Cr2O3 stainless steel slags to understand the selective concentration behavior of Cr into a primary Mg(Cr,Al)2O4 spinel phase during slag solidification and to determine the leaching stability of Cr-containing slags. The spinel solid solution was precipitated within the temperature range of 1600-1400 °C, where the Cr/(Cr+Al) mole ratio in the Mg(Cr,Al)2O4 spinel phase gradually decreased for slags with higher Al2O3/SiO2 mass ratios. When the Al2O3/SiO2 mass ratio increased from 0.125 to 0.5, the Cr content in the amorphous glass phase gradually decreased, with a subsequent increase in the Cr content in the crystalline phase. For slags with a unit Al2O3/SiO2 mass ratio and MgO mole percent comprising less than the combined sum of the Cr2O3 and Al2O3 mole percents, the Cr content in the amorphous glass phase increased, which was correlated with the enhanced substitution of Cr3+ with Al3+ in the spinel. The trend of the amount of Cr-related ions in the leachate was consistent with the trend of Cr in the amorphous glass phase: the amount decreased for slags with Al2O3/SiO2 mass ratios from 0.125 to 5 and then increased for slags with an Al2O3/SiO2 mass ratio of 1. The results suggest that the addition of appropriate amounts of Al2O3 to stainless steel slags could be conducive to stabilizing Cr into the primary spinel phase to minimize Cr leaching into the environment.  相似文献   

7.
The interfacial reaction between alumina refractory and CaO–CaF2–SiO2–Al2O3–MgO–MnO slag was observed at 1873 K to estimate the stability of the spinel phase using computational thermodynamics under refining conditions of Mn‐containing steels. The concentration of MnO formed by the slag–steel reaction in the CaO–CaF2–SiO2–Al2O3–MgO melts generally increased by decreasing the CaO/SiO2 ratio of the initial melts. No intermediate compounds were formed at the refractory–slag interface when the initial CaO/SiO2 ratio was 0.5, whereas CaAl12O19 (CA6) and Mg(Mn)Al2O4 (spinel), identified from TEM analysis using EDS mapping and SAED patterns, were observed at the refractory–slag interface when the CaO/SiO2 ratio was 1.0 or greater. The (at.%Mg)/(at.%Mn) ratio in the spinel solution increased by increasing the CaO/SiO2 ratio, which originated from the fact that MgO activity continuously increased as the CaO/SiO2 ratio increased. From thermodynamic analysis considering the equilibrium constant (KSP) and activity quotient (QSP) of the spinel formation reaction at the slag–refractory interface and the bulk slag phase, the precipitation–dissolution behavior of the spinel phase was predicted, which exhibited good consistency with the experimental results. Hence, the dissolutive corrosion mechanism of alumina refractory into the CaO–CaF2–SiO2–Al2O3–MgO–MnO slag was proposed.  相似文献   

8.
Quasi-volcanic corrosion occurs at the triple-phase interface of alumina refractory ceramics and MgO-containing CaO–Al2O3–SiO2 slags in the air, causing severe damage to ceramics. To address this limitation, in this study, a slag corrosion experiment is performed on alumina refractory ceramics using CaO–Al2O3–SiO2–MgO slags. Various spectroscopic techniques, including electron paramagnetic resonance spectroscopy, are used to investigate the influence of slag structures with varied MgO contents on the corrosion peaks and mechanism. The results show large quantities of reactive radicals, including superoxide radicals, in the slags. Free-radical reactions between refractory ceramics and slags lead to Turing pattern corrosion. An increase in the amount of non-bridged oxygen in the slag structure decreases the amount of original superoxide radicals. Consequently, the intensity of the free-radical reactions of alumina dissolution increases, thereby increasing the height of the corrosion peaks.  相似文献   

9.
Nepheline (Na6K2Al8Si8O32) is a rock‐forming tectosilicate mineral which is by far the most abundant of the feldspathoids. The crystallization in nepheline‐based glass‐ceramics proceeds through several polymorphic transformations — mainly orthorhombic, hexagonal, cubic — depending on their thermochemistry. However, the fundamental science governing these transformations is poorly understood. In this article, an attempt has been made to elucidate the structural drivers controlling these polymorphic transformations in nepheline‐based glass‐ceramics. Accordingly, two different sets of glasses (meta‐aluminous and per‐alkaline) have been designed in the system Na2O–CaO–Al2O3–SiO2 in the crystallization field of nepheline and synthesized by the melt‐quench technique. The detailed structural analysis of glasses has been performed by 29Si, 27Al, and 23Na magic‐angle spinning — nuclear magnetic resonance (MAS NMR), and multiple‐quantum MAS NMR spectroscopy, while the crystalline phase transformations in these glasses have been studied under isothermal and non‐isothermal conditions using differential scanning calorimetry (DSC), X‐ray diffraction (XRD), and MQMAS NMR. Results indicate that the sequence of polymorphic phase transformations in these glass‐ceramics is dictated by the compositional chemistry of the parent glasses and the local environments of different species in the glass structure; for example, the sodium environment in glasses became highly ordered with decreasing Na2O/CaO ratio, thus favoring the formation of hexagonal nepheline, while the cubic polymorph was the stable phase in SiO2–poor glass‐ceramics with (Na2O+CaO)/Al2O3 > 1. The structural origins of these crystalline phase transformations have been discussed in the paper.  相似文献   

10.
The corrosion behavior of MgO in iron‐saturated ZnO‐rich fayalite (ZFS) slags having various FeO/SiO2 ratio and CaO/SiO2 ratio was investigated using MgO crucible tests for 12 h at 1200°C. The FeO/SiO2 and CaO/SiO2 ratios in the ZFS slags were varied from 1.0 to 2.2, and from 0.04 to 0.32, respectively. In all of the tests, it was observed that MgO dissolves into ZFS slags and that (Zn,Fe,Mg)2SiO4 olivine and (Zn,Fe,Mg)O solid solution are formed at the crucible/slag interface. The MgO dissolution decreased with the FeO/SiO2 ratio up to a value of 1.7 and then slightly increased, whereas it continuously increased with the CaO/SiO2 ratio. There is no obvious relationship between the amount of olivine and the FeO/SiO2 ratio or CaO/SiO2 ratio. In comparison, the formation of (Zn,Fe,Mg)O solid solution is enhanced by increasing the FeO/SiO2 ratio or CaO/SiO2 ratio in ZFS slags. The results suggest that MgO corrosion is the lowest for FeO/SiO2 and CaO/SiO2 ratios around 1.7 and 0, respectively.  相似文献   

11.
A combined experimental investigation and thermodynamic assessment was performed for the BaO‐CaO‐Al2O3 system. By using a high‐temperature equilibration/quenching technique and scanning electron microscopy, electron probe microanalysis, and X‐ray powder diffraction analysis, the phase equilibria at 1500°C and phase stability of BaCa2Al8O15 phase were determined. An extensive literature survey was conducted for the experimental and thermodynamic modeling data of the BaO‐CaO‐Al2O3 system. According to the literature data and the present measurements, a thermodynamic assessment was made in order to obtain a set of self‐consistent thermodynamic parameters to describe the BaO‐CaO‐Al2O3 system. Based on the thermodynamic parameters acquired in this work, isothermal sections at 1100°C, 1250°C, 1400°C, 1475°C, and 1500°C and the BaO·Al2O3‐CaO·Al2O3 and BaO·6Al2O3‐CaO·6Al2O3 joints were calculated and compared with the available experimental data.  相似文献   

12.
Crystallization behavior and melt structure of two typical mold fluxes A (CaO–SiO2-based) and B (CaO–Al2O3-based) for casting high-aluminum steel were investigated using double hot thermocouple technology (DHTT), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The results suggest that the crystallization temperature of Flux B is higher, and its crystallization incubation time is shorter compared with Flux A. The precipitated phase in Flux A is CaSiO3, whereas BaAl2O4 and Ca2Al2SiO7 form in Flux B. The structure analyses suggest that the degree of polymerization of Flux A is larger than that of Flux B. In addition, the major structural units of Flux A are Si–O–Si, Q0Si, Q1Si, Q2Si and Q3Si, but those of Flux B are mainly aluminate (Al–O–Al, Al–O-), aluminosilicate (Al–O–Si) and silicate units (Q0Si, Q1Si, Q2Si and Q3Si). These different melt structures are the main reasons why the precipitated phases in these two mold fluxes are different, and the crystallization ability of Flux A is weaker than Flux B.  相似文献   

13.
《Ceramics International》2023,49(13):21994-22003
Viscosity and surface tension strongly influence the efficiency of slag foam in metallurgical processes. An excellent foaming slag preserves heat and lowers the cost of smelting in an electric furnace. In this study, we investigated the viscosity, surface tension, and foaming efficiency of a 2.5CaO/SiO2-xAl2O3-yFeO-MgO slag. We also investigated the different valence oxygen ions by X-ray photoelectron spectroscopy (XPS). The results showed that with a gradual increase in the content of Al2O3, the viscosity initially increased and then decreased, and the changes in surface tension followed a similar pattern. The change in viscosity was caused by the increase in the degree of polymerization of the slag, which was determined by the competitive relationship between polymerization and the reduction in the stability of the overall network structure. Adding a small amount of Al2O3 to the slag slightly increased the number of Al–O–Al structures, whereas adding a large amount of the Al2O3 led to the formation of low-strength Al–O–Si structures, which reduced the stability of the network structure, thus reducing the viscosity. Because the surface tension is related to the concentration of non-bridging oxygens (NBOs), when the NBO content increased, the instability of the surface structure caused an increase in energy, thus increasing the surface tension. In addition, the CaO–SiO2–5MgO-xAl2O3-yFeO five-element oxide in this study had the lowest surface tension at the same NBO concentration, which positively contributed to slag foaming. Finally, When the Al2O3 content in the system increased from 5.1 to 15.7 wt%, the foaming efficiency increased from 24.2 to 69.2 (minute‧centimeters), an increase of 286%.  相似文献   

14.
Geopolymers are inorganic aluminosilicates mainly proposed as environmentally friendly building materials, which are obtained by alkali activation of natural minerals, calcined clay (e.g., metakaolin) and other aluminosilicate sources. The wide range of chemical and mineralogical compositions of these raw materials influences several properties of the obtained geopolymers. In the present work, pure Al2O3·2SiO2 powders were synthesized via the sol–gel technique and proposed as pure aluminosilicate sources to prepare alkali activated geopolymers. Samples differing in the ratio between the SiO2 precursor and the H2O used in the sol–gel process were prepared, in order to study the effect of water content on the material structure and reactivity. The chemical structure of all the obtained Al2O3·2SiO2 powders were characterized by Fourier transform infrared (FT‐IR) and solid‐state nuclear magnetic resonance (27Al and 29Si MAS NMR) spectroscopies and compared to that of a reference metakaolin. Moreover, material reactivity was evaluated by alkali activation of the samples. After 28 days of ageing, 27Al and 29Si MAS NMR and FT‐IR spectra ascertained the formation of a geopolymeric network in the activated samples. The results showed that lower water content allows obtaining a homogeneous Al‐rich geopolymer similar to that obtained, using metakaolin as raw material.  相似文献   

15.
Slags from the nonferrous metals industry have great potential to be used as feedstocks for the production of alkali‐activated materials. Until now, however, only very limited information has been available about the structural characteristics of these materials. In the work presented herein, synthetic slags in the CaO–FeOx–SiO2 system, representing typical compositions of Fe‐rich slags, and inorganic polymers (IPs) produced from the synthetic slags by activation with alkali silicate solutions have been studied by means of X‐ray absorption near‐edge structure (XANES) spectroscopy at the Fe K‐edge. The iron in the slags was largely Fe2+, with an average coordination number of approximately 5 for the iron in the amorphous fraction. The increase in average oxidation number after alkali‐activation was conceptualized as the consequence of slag dissolution and IP precipitation, and employed to calculate the degrees of reaction of the slags. The degree of reaction of the slags increased with increasing amorphous fraction. The iron in the IPs had an average coordination number of approximately 5; thus, IPs produced from the Fe‐rich slags studied here are not Fe‐analogs of aluminosilicate geopolymers, but differ significantly in terms of structure from the latter.  相似文献   

16.
The glass network structure governs various thermos‐physical properties such as viscosity, thermal, and electrical conductivities, and crystallization kinetics. We investigated the effect of temperature on structural changes in a Na2O‐CaO‐Al2O3‐SiO2‐B2O3 glass system using 27Al MAS NMR spectroscopy. Around the glass transition temperature, most of aluminate structures exist as AlO4, acting as a glass former. When the temperature is above the melt crystallization temperature, the AlO4 structure is drastically decreased and glass structures are mainly composed of AlO5 and AlO6, acting as glass modifiers. Thermodynamic assessment based on Gibbs energy minimization was used to confirm the dependency of aluminate structure's amphoteric characteristic on temperature by calculating the site fraction of aluminate molecular structures at different temperatures. Temperature‐induced aluminate structural variation can also influence silicate and borate structural changes, which have been confirmed by the 29Si and 11B NMR spectra.  相似文献   

17.
The crystallization behavior of a CaO-SiO2-MgO-Al2O3 slag system with varying Al2O3/SiO2 mass ratios from 0.03 to 1.10 has been investigated using a confocal laser scanning microscopy (CLSM). The resulting continuous cooling transformation (CCT) and time-temperature-transformation (TTT) curves showed that the initial crystallization temperature increased and the incubation time for crystallization slightly decreased with increasing Al2O3/SiO2 ratio. The crystal growth rate first increased and then decreased with decreasing isothermal temperature. X-ray diffraction (XRD) analysis suggested that Ca2MgSi2O7 or Ca3MgSi2O8 precipitated as the primary phase at lower Al2O3/SiO2 ratios, while the Ca2Al2SiO7 phase was preferred at higher Al2O3/SiO2 ratios. The observed crystalline phases correlated well with the expected thermodynamic predictions from FactSage. In addition, structural analysis using 27Al magic angle spinning nuclear magnetic resonance (27Al MAS-NMR) microscopy of the as-quenched slags indicated the presence of a higher ratio of tetrahedral [AlO4]5-structural units with increasing Al2O3/SiO2 ratio, which enhanced the polymerization of tetrahedral [AlO4]5- and [SiO4]4- structural units to form Ca2Al2SiO7.  相似文献   

18.
Blast‐furnace slags are formed, as iron ore is reduced to metal, as a molten a mixture of refractory and not easily reducible oxides, largely silica, alumina, lime, and magnesia. Their relatively low silica content makes them basic and poor glass formers. Their thermodynamic properties, though important for modeling their formation and reactivity, as well as furnace heat balance, are poorly known. Solution calorimetry of small amounts of solid oxides in a molten oxide solvent at high temperature (up to about 1500°C) permits direct assessment of energetics of dissolution. The enthalpies of solution of slag forming oxides: CaO, SiO2, Al2O3, MgO, and Fe2O3 in a simplified model slag of composition: CaO (45.9 mol%), SiO2 (35.1 mol%), Al2O3 (8.3 mol%), MgO (10.7 mol%) were measured by high‐temperature drop solution calorimetry at 1450°C. For this slag composition, enthalpies of solution become more exothermic in the order: Fe2O3 (279.3 ± 20.8 kJ/mol), MgO (56.7 ± 9.1 kJ/mol), Al2O, (41.6 ± 11.3 kJ/mol), CaO (?4.3 ± 2.3 kJ/mol), and SiO2, (?20.4 ± 4.4 kJ/mol), reflecting the relatively basic character of this low‐silica melt. Within these fairly large experimental errors, characteristic of calorimetry at this high temperature, there is little or no discernible concentration dependence for these heats of solution. The trends seen for these five solutes parallel those seen for heats of solution of the same oxides in other melts at various temperatures, with changes in magnitude reflecting the differences in acid‐base character of the melts. The new data for quartz show systematic behavior which extends the range of basicity studied for the enthalpy of dissolution of silica. The results provide reliable data for future modeling of the thermal balance of steel‐making furnaces and geologic and ceramic systems.  相似文献   

19.
A comparative study on CaO–MgO–Al2O3–SiO2 slag and CaO–MgO–Al2O3–SiO2–Cr2O3 slag was conducted to investigate the distribution of the elements at the gas-slag interface. The effect of redox states of chromium on the distribution of sulfur and oxygen at the interface was revealed by gas-slag equilibrium method using X-ray photoelectron spectroscopy at 1873K. From the analysis of the S2p core-level spectra, the negative divalent sulfur(S2?) was detected at the interface in the Cr-bearing slag, which directly proved that sulfur exists in the form of S2? in the slag for the first time. However, the S2? peak is very weak at the interface of Cr-free slag. The reason for the difference between the two slags may be due to chromium changing the interface structure. According to the O1s and Cr2p core-level spectra, non-bridged oxygen(O?) increased, while bridged oxygen(O0) decreased with the etching depth deepened. The increase of NBO/BO and Cr2+/Cr3+ elucidates that Cr3+ can modify the structure of the slag as basicity substance, but its effect is weaker than that of Cr2+. Meanwhile, due to the affinity of sulfur and chromium, the addition of chromium may also lead to the enhancement of the S2? peak at the gas-slag interface. Gradient change of elements at the interface proved the existence of the boundary layer.  相似文献   

20.
The sharp loss‐in‐capacity in CO2 capture as a result of sintering is a major drawback for CaO‐based sorbents used in the calcium looping process. The decoration of inert supports effectively stabilizes the cyclic CO2 capture performance of CaO‐based sorbents via sintering mitigation. A range of Al‐decorated and Al/Mg co‐decorated CaO‐based sorbents were synthesized via an easily scaled‐up spray‐drying route. The decoration of Al‐based and Al/Mg‐based supports efficiently enhanced the cyclic CO2 capture capability of CaO‐based sorbents under severe testing conditions. The CO2 capture capacity losses of Al‐decorated and Al/Mg co‐decorated CaO‐based sorbents were alleviated, representing more stable CO2 capture performance. The stabilized CO2 capture performance is mainly attributed to the formation of Ca12Al14O33, MgAl2O4, and MgO that act as the skeleton structures to mitigate the sintering of CaCO3 during carbonation/calcination cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号