首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
尺寸驱动法和程序驱动法是对SolidWorks进行二次开发的两种参数化设计方法。在研究比较现有参数化方法的优缺点的基础上,提出联合法参数化设计,按实现形式分类为串联式与并联式。研究表明,联合参数法在设计中能充分发挥两种参数化方法的优点,降低复杂零件参数化设计的难度。论文基于VC++6.0开发环境编制了联合参数化方法的实现程序,验证了在复杂零件参数化设计中的优越性。  相似文献   

2.
本文深入研究并实现了使用UG的电子表格法进行工装夹具设计中常用的标准件及通用件进行参数化建模以及2D工程图生成的方法。该方法适用面广,无需编程,通过简单的编辑电子表格即可实现。  相似文献   

3.
【摘要】从弱耦合的角度出发,对流体计算软件fluent进行二次开发,利用其用户自定义函数(UDFs)描述结构的运动状态并结合动网格技术实现流固耦合。在保证动网格运动速度符合空间守恒法则的条件下,针对固体模型在流场中运动受网格尺寸限制且易造成网格变形过大导致计算失败的问题提出了多层动网格的解决方法。流体动力计算时考虑湍流的作用,采用大涡模拟方法求解N-S方程。数值模拟了平板做单自由度强迫振动的断面绕流流场,通过最小二乘法拟合气动力时程曲线获得气动导数。仿真结果与通过Theodorsen理论导出的平板气动导数具有良好的一致性。  相似文献   

4.
提出温度体模型动网格生成方法,并将其应用于流固耦合算法,生成物体振动过程中的动态网格。温度体模型动网格方法将运动边界的位移映射为求解域的温度边界条件,以流体能量方程或固体导热方程作为控制方程求解得到计算域内的温度分布,将求解得到的温度分布作为网格节点的动态位移。基于温度体模型的动网格方法物理意义清晰,算法实现简单,能够快速而有效地生成高品质的动态网格,特别在边界位移大的情况下与其他网格生成方法相比有较大的优势。最后采用流固耦合有限元算法求解了定浆式轴流泵强迫振动过程中连锁特性和柱体由于旋涡脱落诱发自激振动两个工程问题。其中流场采用基于特征线方程的分离算法进行求解,固体场采用Newmark方法进行求解,在计算过程中采用温度体模型生成动态网格。结果表明该发展的算法性能优异,能有效解决流固耦合中的振动问题。  相似文献   

5.
《中国测试》2017,(5):138-144
悬架系统直接关系到车辆的安全性、平顺性和操稳性,由于路面激励是随机激励,对悬架系统的状态监测一直是研究难点。该文提出一种新的悬架状态监测方法,利用仅需输出的平均相关随机子空间法识别模态参数,再通过模态参数变化对故障造成的悬架刚度变化进行监测。首先对平均相关随机子空间法在较高阻尼比下的识别效果进行分析,验证算法在悬架监测中的可行性;然后基于车辆七自由度振动模型对模态参数进行仿真识别,分析路面激励及噪声对识别结果的影响,并提出基于振型和模态能量的监测方法;最后设计利用9轴MEMS惯性传感器的试验方案对正常及故障状态进行监测,验证方法的可信度。  相似文献   

6.
A new procedure is suggested for controlling the element‐size distribution of surface meshes during automatic adaptive surface mesh generation. In order to ensure that the geometry of the surface can be accurately captured, the curvature properties of the surface are first analysed. Based on the principal curvatures and principal directions of the surface, the curvature element‐size requirement is defined in the form of a metric tensor field. This element‐size controlling metric tensor field, which can either be isotopic or anisotopic depending on the user requirement, is then employed to control the element size distribution during mesh generation. The suggested procedure is local, adaptive and can be easily used with many parametric surface mesh generators. As the proposed scheme defines the curvature element‐size requirement in an implicit manner, it can be combined with any other user defined element size specification using the standard metric intersection procedure. This eventually leads to a simple implementation procedure and a high computational efficiency. Numerical examples indicate that the new procedure can effectively control the element size of surfacemeshes in the cost of very little additional computational effort. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, a new metric advancing front surface mesh generation scheme is suggested. This new surface mesh generator is based on a new geometrical model employing the interpolating subdivision surface concept. The target surfaces to be meshed are represented implicitly by interpolating subdivision surfaces which allow the presence of various sharp and discontinuous features in the underlying geometrical model. While the main generation steps of the new generator are based on a robust metric surface triangulation kernel developed previously, a number of specially designed algorithms are developed in order to combine the existing metric advancing front algorithm with the new geometrical model. As a result, the application areas of the new mesh generator are largely extended and can be used to handle problems involving extensive changes in domain geometry. Numerical experience indicates that, by using the proposed mesh generation scheme, high quality surface meshes with rapid varying element size and anisotropic characteristics can be generated in a short time by using a low‐end PC. Finally, by using the pseudo‐curvature element‐size controlling metric to impose the curvature element‐size requirement in an implicit manner, the new mesh generation procedure can also generate finite element meshes with high fidelity to approximate the target surfaces accurately. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
In recent years, demand for three‐dimensional simulations has continued to grow in the field of computer‐aided engineering. Especially, in the analysis of forming processes a fully automatic and robust mesh generator is necessary for handling complex geometries used in industry. For three‐dimensional analyses, tetrahedral elements are commonly used due to the advantage in dealing with such geometries. In this study, the advancing front technique has been implemented and modified using an optimization scheme. In this optimization scheme, the distortion metric determines ‘when and where’ to smooth, and serves as an objective function. As a result, the performance of the advancing front technique is improved in terms of mesh quality generated. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Local transformation, or topological reconnection, is one of the effective procedures for mesh improvement method, especially for three‐dimensional tetrahedral mesh. The most frequently used local transformations for tetrahedral mesh are so‐called elementary flips, such as 2‐3 flip, 3‐2 flip, 2‐2 flip, and 4‐4 flip. Owing to the reason that these basic transformations simply make a selection from several possible configurations within a relatively small region, the improvement of mesh quality is confined. In order to further improve the quality of mesh, the authors recently suggested a new local transformation operation, small polyhedron reconnection (SPR) operation, which seeks for the optimal tetrahedralization of a polyhedron with a certain number of nodes and faces (typically composed of 20–40 tetrahedral elements). This paper is an implementation of the suggested method. The whole process to improve the mesh quality by SPR operation is presented; in addition, some strategies, similar to those used in advancing front technique, are introduced to speed up the operation. The numerical experiment shows that SPR operation is quite effective in mesh improvement and more suitable than elementary flips when combined with smoothing approach. The operation can be applied to practical problems, gaining high mesh quality with acceptable cost for computational time. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The centroidal Voronoi tessellation based Delaunay triangulation (CVDT) provides an optimal distribution of generating points with respect to a given density function and accordingly generates a high‐quality mesh. In this paper, we discuss algorithms for the construction of the constrained CVDT from an initial Delaunay tetrahedral mesh of a three‐dimensional domain. By establishing an appropriate relationship between the density function and the specified sizing field and applying the Lloyd's iteration, the constrained CVDT mesh is obtained as a natural global optimization of the initial mesh. Simple local operations such as edges/faces flippings are also used to further improve the CVDT mesh. Several complex meshing examples and their element quality statistics are presented to demonstrate the effectiveness and efficiency of the proposed mesh generation and optimization method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
The commonly used advancing layers method to generate hybrid meshes suffers from many drawbacks. The generation of isotropic meshes for far-field domains with irregular and complex boundary subdivisions after boundary layers advancing is time consuming and, in some cases, is not robust in 3D. To address these difficulties, this paper presents a novel method to generate hybrid polygonal meshes in 2D and polyhedral meshes in 3D for viscous flow simulations. In the proposed method, first, we generate a full Voronoi diagram for the appropriate distribution of generators that avoids the extra mesh generation required for the remaining holes in the advancing layers method. To recover the inner solid boundaries, we implement a robust boundary cell cutting process. Because the generators are located layer by layer near the boundaries, there is no requirement to consider all of the Voronoi cells. Only the first layer Voronoi cells must be cut, making the calculation very efficient. We have generated hybrid meshes using the present method for many viscous flow cases. The results show close agreement between the computations and the experimental results, thus indicating the reliability and effectiveness of the hybrid mesh generated by our method.  相似文献   

13.
A new operator named probability metric (PM) for defining the distance between random values or random vectors is proposed. Although the PM is a generalisation of the metric operator it does not satisfy the first metric axiom. Two particular forms of PM, for normal and uniform probability distributions are presented. Numerical example demonstrates the efficiency of PM in Shepard-Liszka approximation of residual stresses state discrete data, obtained from a strain gauge experiment. Possible applications of PM include fringe pattern analysis. The PM can be also employed in quantum mechanics issues to estimate the distance of two quantum particles expressed by their wave functions.  相似文献   

14.
文章综述了材料表面自纳米化的国内外研究现状,包括表面自纳米化的制备方法、基本原理、表层结构及机理、性能研究,展望了表面自纳米化技术的发展前景及目前有待解决的问题。  相似文献   

15.
A gradient‐based adaptation procedure is proposed in this paper. The relative error in the total strain energy from two adjacent adaptation stages is used as a stop‐criterion. The refinement–coarsening process is guided by the gradient of strain energy density, based on the assumption: a larger gradient needs a richer mesh and vice versa. The procedure is then implemented in the element‐free Galerkin method for linear elasto‐static problems. Numerical examples are presented to show the performance of the proposed procedure. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号