首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
再生混凝土长龄期强度与收缩徐变性能   总被引:1,自引:0,他引:1  
通过改变再生粗骨料取代率,并考虑引气剂的影响,对再生混凝土长龄期下的立方体抗压强度和收缩性能进行试验;采用不同的加载龄期,对再生粗骨料取代率为50%的再生混凝土徐变性能进行试验研究;建立了再生混凝土长龄期强度推算公式。结果表明:长龄期下再生混凝土的立方体抗压强度变化规律与普通混凝土基本一致,28d龄期再生混凝土的立方体抗压强度随再生粗骨料取代率的增加而降低;再生混凝土的收缩随再生粗骨料取代率的增加而增加,添加粉煤灰、矿粉等矿物外掺料可以使再生混凝土收缩降低;加载龄期对于再生混凝土徐变值有影响,加载龄期越早,再生混凝土徐变值越大;利用所建立的强度推算公式计算得到的强度值与试验结果比较吻合,并且优于欧洲CEB-FIP Model Code 1990规范建议公式的计算结果。  相似文献   

2.
研究再生混凝土强度等级、再生粗骨料取代率对混凝土立方体抗压强度及劈裂强度的影响,揭示再生混凝土立方体抗压强度随龄期的变化规律,制备了多组不同不同龄期(7d、14d、28d、60d)、不同再生混凝土强度等级(C35、C40、C45)、不同再生粗骨料取代率(30%、50%、70%、100%)的立方体试件。试验结果表明:再生混凝土立方体抗压强度及劈裂抗拉强度均与再生粗骨料取代率关系明显,随取代率的增加而降低,与再生混凝土强度等级关系不明显;再生混凝土抗压强度随着龄期的增长而增大,但28d之前增长速度较快。通过对试验数据分析,再生混凝土的拉压比随取代率的增加而下降,拉压比普遍低于普通混凝土。  相似文献   

3.
《混凝土》2015,(8)
为了探讨混凝土抗压强度和收缩与再生粗骨料取代率之间的关系,研究了再生粗骨料取代率为30%、40%、50%和70%混凝土的28 d立方体抗压强度和自收缩、干燥收缩的变化趋势,并建立了自收缩和干燥收缩与取代率和龄期之间的函数关系。结果表明:改变再生粗骨料的取代率,混凝土抗压强度呈三次抛物线变化,在取代率为50%时混凝土抗压强度取得最大值;再生混凝土的自收缩、总收缩和干燥收缩与普通混凝土变化趋势相同,在龄期3 d前发展较快,龄期7 d后相对趋于平缓;再生混凝土的收缩变形随再生粗骨料取代率的增加而逐渐增大,且在龄期28 d时再生混凝土各个取代率的干燥收缩增长幅度都大于自收缩。  相似文献   

4.
试验中配制了不同水灰比、粗骨料取代率、细骨料取代率的再生混凝土,对其进行了基本力学性能试验,测试了立方体抗压强度、轴心抗压强度、劈裂抗拉强度,考察了受压破坏过程与破坏形态,分析了再生粗、细骨料、水灰比对再生混凝土破坏形态及抗压强度等的影响。试验结果表明:再生粗骨料、细骨料配制的再生混凝土的破坏形态与普通混凝土破坏形态相似;再生混凝土的抗压强度随着水灰比、再生粗、细骨料取代率的增大而降低;当再生粗骨料取代率大于75%时,再生混凝土抗压强度较普通混凝土有显著下降;当再生细骨料取代率小于30%时,再生细骨料对再生混凝土抗压强度的影响很小;当再生混凝土完全使用再生粗、细骨料时,各水灰比下再生混凝土抗压强度较普通混凝土下降了36%~42%;通过回归分析,提出了再生混凝土劈裂抗拉强度及轴心抗压强度与立方体抗压强度的换算公式。  相似文献   

5.
利用海水、原状海砂及再生粗骨料,制备了设计预期强度为C20~C50的海水海砂再生混凝土。通过240个标准立方体(150 mm×150 mm×150 mm)和96个棱柱体(150 mm×150 mm×300 mm)试件,完成了工作性能、立方体抗压强度、轴心抗压强度、劈裂抗拉强度以及弹性模量试验,研究了海水海砂再生混凝土的基本力学性能;最后基于试验数据,得到了海水海砂再生混凝土立方体抗压强度与轴心抗压强度关系公式以及弹性模量与轴心抗压强度关系公式。结果表明:海水海砂再生混凝土工作性能良好,C40和C50强度等级的坍落度比一般再生混凝土分别提高5%和33%;立方体抗压强度、轴心抗压强度和劈裂抗拉强度随着龄期变长而增加,且长期强度趋于稳定;与普通混凝土相比,海水海砂再生混凝土7 d立方体抗压强度提高13%~52%,28 d抗压强度降低约5%,90 d抗压强度降低约15%,180 d抗压强度降低18%~29%;海水海砂再生混凝土28 d弹性模量比普通混凝土略有降低,降低幅度在14%以内;再生粗骨料对混凝土力学性能、工作性能的影响大于海水海砂。  相似文献   

6.
再生混凝土的基本性能研究   总被引:1,自引:0,他引:1  
设计并完成了在掺与不掺减水剂两种配合比下,再生粗骨料取代率分别为0、30%、50%、100%的再生混凝土的和易性、立方体抗压强度、棱柱体抗压强度的相关试验,并以天然骨料混凝土作为基准进行了对比分析。试验结果表明,粗骨料取代率对混凝土的流动性、粘聚性与保水性有不同的影响,适量的减水剂可以增强混凝土的流动性;在水灰比相同的情况下,再生粗骨料取代率为30%时再生混凝土立方体抗压强度和轴心抗压强度都高于普通混凝土;再生混凝土的抗压强度随龄期的发展和普通混凝土比较相近。  相似文献   

7.
锂渣及再生粗骨料对混凝土抗压强度有一定的影响,通过轴心抗压试验获得了立方体与棱柱体抗压强度之间的线性关系。结果表明,适量的再生粗骨料和锂渣可以有效提高混凝土28d抗压强度,当再生粗骨料取代率为30%,锂渣掺量为20%时,28d的立方体和棱柱体抗压强度最大,较同龄期下未掺锂渣的普通混凝土增长了39.1%和48.2%。  相似文献   

8.
商品混凝土早期强度随龄期增长规律的试验研究   总被引:2,自引:0,他引:2  
陈萌  张兴昌 《建筑科学》2007,23(9):62-65,37
对五种不同强度等级(C20,C30,C40,C50和C60)的183个混凝土试件分别进行了五个龄期(3 d,7 d,14 d,28 d和60 d)的立方体抗压强度、劈裂抗拉强度试验研究,分别得出了标准养护条件下不同强度等级混凝土在不同龄期的抗压强度统一计算公式和劈裂抗拉强度随龄期增长的经验公式;并给出60 d龄期内各个龄期混凝土劈裂抗拉强度与立方体抗压强度之间的换算公式。对三种不同强度等级(C20,C40,和C60)的45个混凝土构件(100 mm×100 mm×375 mm)分别进行了五个龄期(3 d,7 d,14 d,28 d和60 d)的轴心抗拉强度试验研究,得出了轴心抗拉强度随龄期增长的经验公式,给出了60 d龄期内各个龄期混凝土轴心抗拉强度与劈裂抗拉强度之间的换算公式。上述公式为今后修订现行《混凝土结构设计规范》(GB50010-2002)中有关耐久性的条目提供了重要的试验数据和背景材料。  相似文献   

9.
再生骨料混凝土不同龄期的力学性能   总被引:1,自引:0,他引:1  
将废旧混凝土试块破碎加工成再生粗骨料,按照与天然粗骨料颗粒级配相一致的原则重新配制,然后以0%(质量分数,下同),50%和100%这3种粗骨科取代率、相同配合比配制再生骨料混凝土(RAC),测试其不同龄期的力学性能.结果表明:随着粗骨料取代率的增加,相同养护龄期的RAC立方体抗压强度、轴心抗压强度以及弹性模量均有不同程度降低;RAC的7d抗压强度增长较快,360 d抗压强度较28d的提高34.4%~47.8%;28 d轴心抗压强度与相同龄期的立方体抗压强度呈线性关系;弹性模量随养护时间的延长有所提高,与天然骨料混凝土(NAC)相比,RAC的360 d弹性模量降低13.9%~24.2%.  相似文献   

10.
钢纤维粉煤灰再生混凝土强度正交试验研究   总被引:4,自引:0,他引:4  
利用正交试验方法对钢纤维粉煤灰再生混凝土(以下简称再生混凝土)的强度性能进行了试验,考察了粉煤灰取代率(质量分数)、钢纤维掺量(体积分数)和再生粗骨料取代率(质量分数)对再生混凝土28d立方体抗压强度、劈裂抗拉强度和抗折强度的影响,并对试验结果进行了系统分析.结果表明:粉煤灰取代率对再生混凝土抗压与抗折强度的影响规律一致,但对其劈裂抗拉强度的影响规律却不相同;再生混凝土抗压强度、劈裂抗拉强度和抗折强度均随钢纤维掺量的增加而增大,但钢纤维掺量对劈裂抗拉和抗折强度的影响显著,对抗压强度的影响较小;再生粗骨料取代率对抗压强度、劈裂抗拉强度和抗折强度的影响规律基本一致,强度总体上随再生粗骨料取代率的增大而增大.要使再生混凝土强度得到提高,需降低粉煤灰的取代率,增大钢纤维掺量和再生粗骨料取代率.当粉煤灰取代率在30%以内、钢纤维掺量在18%以内时,粉煤灰取代率对再生混凝土抗压强度的影响最大,其次是再生粗骨料取代率,最次是钢纤维掺量;钢纤维掺量对再生混凝土劈裂抗拉强度和抗折强度的影响最大,其次是粉煤灰取代率,最次是再生粗骨料取代率.  相似文献   

11.
通过16组256块试验对铁尾矿砂不同取代率和再生粗骨料不同服役年限的再生混凝土立方体抗压强度、轴心抗压强度和劈裂抗拉强度进行了试验研究。研究结果表明:对于立方体、轴心抗压强度,在不同铁尾矿砂取代率的情况下均超过普通混凝土对应的强度;对于劈裂抗拉强度,当在30%取代率下,RAC-1、RAC-2、RAC-3分别比普通混凝土增加了13.38%、11.15%、11.46%,其强度也都超过普通混凝土的强度。通过对试件的微观形貌分析,只有30%的铁尾矿和30%的再生骨料能达到最佳的粒径分布,从而提高了混凝土的内部密实度和强度。  相似文献   

12.
进行了再生废砖粗骨料混凝土基本力学性能的试验,主要研究了与普通混凝土强度等级相同条件下再生废砖粗骨料混凝土的立方体抗压强度、轴心抗压强度、劈裂抗拉强度、弹性模量。试验结果表明:再生砖粗骨料混凝土的立方体抗压强度、轴心抗压强度、劈裂抗拉强度、弹性模量均要低于普通混凝土,其主要原因可能为再生砖粗骨料强度较低;再生砖粗骨料混凝土的立方体抗压强度、轴心抗压强度和劈裂抗拉强度与普通混凝土的破坏形式相类似。  相似文献   

13.
通过改变再生粗骨料取代率,对再生混凝土的立方体抗压强度、棱柱体抗压强度、弹性模量等力学性能和收缩徐变性能进行了试验。在试验研究的基础上,通过将再生混凝土模型化为单骨料平面模型,建立了再生混凝土徐变的有限元计算模型,利用ANSYS软件分析了单轴受压时模型化再生混凝土的徐变发展特点,揭示了再生混凝土徐变的机理。研究结果表明:再生混凝土的28d立方体抗压强度和弹性模量随再生粗骨料取代率的增加而降低,再生混凝土的收缩和徐变随再生粗骨料取代率的增加而增加;模型化再生混凝土中由于受到新砂浆、老砂浆徐变的影响,随着时间的推移,砂浆应力将向粗骨料转移;利用ANSYS软件计算所得模型化再生混凝土徐变和试验数据基本吻合。  相似文献   

14.
通过再生粗骨料自密实混凝土(RCASCC)的工作性能、立方体抗压强度、劈裂抗拉强度、轴心抗压强度测试和应力应变试验,分析了不同再生粗骨料取代率(R)下RCASCC的工作性能和基本力学性能的变化规律,并提出了RCASCC的应力应变本构方程.结果表明:随着R的增加,RCASCC的工作性能变差,但仍能满足现行规范要求;随着R的增加,RCASCC的立方体抗压强度、轴心抗压强度、劈裂抗拉强度总体呈现下降趋势,但R=50%时的立方体抗压强度和轴心抗压强度要高于R=25%之时;随着龄期的增长,RCASCC的抗压强度呈现非线性增长的趋势;经验证,所得出的RCASCC轴心抗压强度、劈裂抗拉强度与立方体抗压强度之间的换算关系与普通混凝土换算关系基本一致,RCASCC的应力应变本构方程与普通混凝土的单轴受压本构方程相近.  相似文献   

15.
《混凝土》2015,(11)
完成了橡胶粉改性再生混凝土基本力学性能的试验研究,主要研究了不同橡胶粉取代率、再生混凝土粗骨料取代率、橡胶粉粒径大小对橡胶粉改性再生混凝土立方体抗压强度、轴心抗压强度、劈裂抗拉强度的影响。基于试验数据的统计回归,给出了橡胶粉改性再生混凝土各项强度指标之间的关系式。  相似文献   

16.
对高性能天然和再生骨料混凝土进行了基本力学性能试验,测得了其立方体抗压强度、棱柱体轴心抗压强度、抗拉强度、弹性模量。试验结果表明:高性能再生骨料混凝土的上述四个力学性能指标数值均小于天然的,而且抗拉强度和弹性模量降低幅度更大;随强度等级提高,棱柱体轴心抗压强度和抗拉强度与立方体抗压强度之比却是逐渐增大,其脆性也就越大。建立了高性能混凝土与高性能再生混凝土弹性模量与立方体抗压强度之间的公式。  相似文献   

17.
丁海军  王振波  张卫东 《山西建筑》2010,36(20):131-132
通过试验测出再生粗骨料的堆积密度、级配、吸水率、压碎指标等,参照《普通混凝土设计规程》,采用附加水法,实验室配制C30再生混凝土,再生粗骨料取代率为0%,25%,50%,75%,100%。试验结果表明,随再生粗骨料取代率的增大,立方体28 d抗压强度逐步降低,但是都能满足C30强度等级要求。  相似文献   

18.
通过试验研究水灰比、再生粗骨料取代率和用水量对再生混凝土早期抗压强度和抗折强度的影响。研究结果表明,再生混凝土各龄期的强度系数随水灰比、骨料取代率、单位用水量等因素变化不大。再生混凝土的各个龄期的抗压和抗折强度均随水灰比和再生骨料取代率的增大而降低。根据试验结果建立了再生粗骨料取代率为100%的再生混凝土早期抗压强度和抗折强度计算模型,该模型计算结果与他人试验结果吻合较好。  相似文献   

19.
系统地研究了再生粗骨料混凝土的抗压强度与水灰比、粗骨料取代率以及龄期之间的关系。通过与天然粗骨料混凝土进行对比试验分析得出:再生混凝土的抗压强度随龄期的发展规律接近于普通混凝土;再生混凝土的抗压强度与再生粗骨料取代率的关系密切;再生混凝土的抗压强度与水灰比变化的规律不尽一致。  相似文献   

20.
考虑水胶比、再生粗骨料取代率、陶瓷粉掺量为陶瓷粉再生混凝土抗压强度的影响因素,并对每个因素进行四个水平的正交试验设计,探讨其对龄期为7、28、56 d陶瓷粉再生混凝土抗压强度的影响。通过正交试验极差分析、层次分析和方差分析各因素对陶瓷粉再生混凝土抗压强度的各个影响因素进行了敏感性分析,并提出了各个影响因素在各个强度龄期的最优配合比。结果表明:水胶比对陶瓷粉再生混凝土抗压强度有显著影响,其最优水平为0.380;其次是再生粗骨料取代率,在混凝土龄期为28、56 d时影响程度大于陶瓷粉掺量,最优取代率为30%;最次是陶瓷粉掺量,但该因素在混凝土龄期为7 d时影响程度大于再生粗骨料取代率,从应用方面考虑,最优掺量为20%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号