首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过试验研究了外掺聚丙烯纤维的活性粉末混凝土(RPC)高温爆裂及高温后力学性能,分析高温后RPC力学性能变化规律。结果表明,在RPC中掺入聚丙烯纤维有利于提高混凝土的抗爆裂性能,当聚丙烯纤维体积掺量为0.3%时,RPC试件在升温过程中并未发生爆裂。随着温度的升高,高温后RPC的抗压强度、抗拉强度均先提高后降低,其临界温度分别为300、100℃。随着聚丙烯纤维掺量的增加,高温后RPC相对抗压强度及抗拉强度也越高。根据试验结果拟合出聚丙烯纤维掺量为0.3%的RPC高温后抗压强度及抗拉强度计算公式。  相似文献   

2.
高温后聚丙烯纤维高强混凝土力学性能试验研究   总被引:1,自引:0,他引:1  
通过对高温后聚丙烯纤维高强混凝土和素高强混凝土力学性能的试验研究,探讨了聚丙烯纤维高强混凝土的抗压强度、抗拉强度和抗折强度在不同温度下的变化规律,分析了聚丙烯纤维高强混凝土的抗爆裂机理.研究结果表明,聚丙烯纤维高强混凝土的抗压强度、抗拉强度和抗折强度随温度的升高而降低,在400℃以内降低幅度较小,400℃以后显著降低.聚丙烯纤维能够显著改善高强混凝土的抗爆裂性能.  相似文献   

3.
刘华新  郑太元 《工业建筑》2022,(2):18-23+107
对高温作用下的素混凝土、纳米SiO2混凝土、玄武岩纤维增强纳米SiO2混凝土进行抗压、劈裂抗拉和抗折试验,建立了混凝土强度预测模型。结果表明:各组混凝土抗压强度均在400℃时达到峰值,此时各组混凝土较常温时提高范围为3.5%~6.8%,随后逐渐降低;劈裂抗拉强度和抗折强度均随着温度的升高而逐渐降低,800℃时,素混凝土的劈裂抗拉强度残余率和抗折强度残余率分别为27.6%、36.2%。纳米SiO2的掺入提高了素混凝土的抗压、劈裂抗拉和抗折强度。掺入玄武岩纤维后的纳米SiO2混凝土在800℃高温后的抗压强度、劈裂抗拉强度、抗折强度最大分别提高了33.7%、15.6%、17.2%。建立的高温作用后混凝土强度预测模型的精确度较高。  相似文献   

4.
以受火温度、石粉含量为变化参数,设计并制作了210个100 mm×100 mm×100 mm的机制砂混凝土立方体试件,对其进行高温后的物理力学性能试验,获取了试件的质量损失率以及抗压强度和劈裂抗拉强度,建立了机制砂混凝土高温后抗压强度和劈裂强度的劣化模型,同时结合X射线衍射和扫描电子显微镜等技术,揭示了高温后机制砂混凝土力学性能劣化的微观机理。基于最高受火温度和质量损失率,分别提出了高温后机制砂混凝土抗压强度和劈裂抗拉强度评估计算式。结果表明:随着温度的升高,机制砂混凝土试件的表面颜色从灰色变成红褐色,最后呈白色,高温作用使试件表面出现了温度裂缝及剥落现象; 试件的质量损失率随着石粉含量的增加而增大; 混凝土抗压强度和劈裂抗拉强度随着温度的升高显著减小; 随着石粉含量的增加,混凝土抗压强度和劈裂抗拉强度先增大后减小,当石粉含量(质量分数)为10%时,混凝土强度达到最大值; 基于试验结果建立的高温后机制砂混凝土抗压强度和劈裂抗拉强度的劣化模型拟合度较好; 混凝土中掺入适量的石粉能促进体系中钙钒石和氢氧化钙等水化产物数量,当经受700 ℃高温后,水泥水化物脱水分解使混凝土内部裂缝和孔隙增多。  相似文献   

5.
混凝土原材料及强度等级不同其火灾高温响应不同,根据目前大量使用机制砂拌制混凝土的现状,研究不同强度等级的机制砂和天然砂混凝土遭遇火灾高温后产生的损伤破坏及差异,对高温作用后的混凝土测试其抗压、劈拉强度及孔隙结构,分析不同混凝土不同温度作用后力学性能、孔隙率和孔径分布的变化。结果表明,不同温度作用后混凝土性能的响应及变化规律基本相同。不同强度等级、不同种类砂子,混凝土强度损失变化规律基本相似,但强度等级越高,下降速率越大;抗压强度400℃之前下降较慢,之后强度下降迅速,尤其500~600℃抗压强度陡降,800℃后强度基本丧失;劈裂抗拉强度随温度升高急剧下降,但仍在500~600℃内强度下架速率最快,800℃后强度基本丧失;相同强度等级下机制砂混凝土抗压强度下降速率略高于天然砂混凝土。各种混凝土孔隙率及不同孔径所占比例随温度变化相似,均呈现出总孔隙率增加、无害孔及少害孔数量降低,有害孔及多害孔数量增加的趋势。不同强度等级、不同种类砂子,混凝土内部孔隙结构变化规律与抗压强度变化规律一致。  相似文献   

6.
基于高温后强度和变形性能指标评价玄武岩纤维混凝土耐高温性能,分析了不同温度作用后玄武岩纤维掺量的混凝土试件外形特征、质量损失、抗折和抗压强度以及抗压峰值应变,对高温作用后玄武岩纤维混凝土力学性能变化规律进行了探究。试验表明:随温度的升高,玄武岩纤维混凝土抗压和抗折试件的质量逐渐减小;室温至400℃时,玄武岩纤维混凝土抗压强度有所提高而抗折强度迅速下降,抗压峰值应变变化不明显;400~800℃时,随温度的增加,抗压强度与抗折强度快速下降,而抗压峰值应变快速增加。  相似文献   

7.
试验首先对无纤维、塑钢纤维(HPPF)和聚丙烯腈纤维(PANF)三组陶粒混凝土进行冻融循环作用,然后分20,200,400,600,800℃五个温度水平进行高温作用,研究受冻融影响高温作用下,未掺纤维和掺入不同纤维的陶粒混凝土力学性能变化规律。试验结果表明:纤维的掺入能够对陶粒混凝土中裂缝的产生和扩展起到一定阻止作用,使陶粒混凝土的抗冻性能得到改善,有效缓解混凝土脆性破坏特征;未经冻融作用时,掺入HPPF,PANF后,在20~400℃范围内,陶粒混凝土的立方体残余抗压强度均高于无纤维掺入的陶粒混凝土,在20~200℃范围内,可明显地提高陶粒混凝土的残余劈裂抗拉强度;冻融循环作用后,无纤维陶粒混凝土的残余抗压强度和残余劈裂抗拉强度都明显高于其他二者;冻融循环作用后,在20~400℃三组陶粒混凝土的棱柱体残余抗压强度值明显减小。  相似文献   

8.
研究了钢纤维体积掺量(0、0.5%、1.0%、1.5%)以及温度(25、105、200、300、400℃)对重晶石混凝土(BC)质量损失、抗压强度、劈裂抗拉强度及超声波波速的影响,建立了高温作用后钢纤维BC的损伤演化曲线和超声波波速与强度的关系曲线。结果表明:随温度的升高,BC的质量损失逐渐增加,抗压强度、劈裂抗拉强度及超声波波速均逐渐下降;掺入钢纤维可提高BC的抗压及劈裂抗拉强度,对劈裂抗拉强度的影响较大;BC的超声波波速与强度的拟合度较高,可用超声无损检测技术评估BC高温作用后的受损程度。  相似文献   

9.
《Planning》2020,(4)
为研究纤维及二次养护对C60高性能混凝土(high performance concrete, HPC)高温后强度的影响,对掺加聚丙烯纤维、钢纤维及混杂纤维(聚丙烯纤维和钢纤维混掺)的C60 HPC进行模拟火灾试验;待试件冷却至常温(20℃)后,分别设计2组试验(一组为直接加载,另一组为继续标准养护14 d后进行加载),测定其抗压强度和劈裂抗拉强度。试验结果表明:随受火温度升高,各纤维掺量C60 HPC抗压强度和劈裂抗拉强度均下降;与不掺或单掺纤维相比,混掺纤维可显著降低高温对混凝土的损伤;对高温后C60 HPC进行二次养护可使其抗压强度和劈裂抗拉强度得到一定程度回升。  相似文献   

10.
通过对分别掺入聚丙烯腈纤维(PANF)、聚乙烯醇纤维(PVAF)的陶粒混凝土进行20,200,400,600,800℃五个温度水平高温后的加载试验,研究纤维掺入对陶粒混凝土抗压强度、抗拉强度与弹性模量随温度的变化规律,并与无纤维掺入陶粒混凝土进行对比分析。试验表明:分别掺入纤维PANF和PVAF后,对高温后陶粒混凝土的立方体抗压强度无明显改善效应,但可有效提高陶粒混凝土高温后的劈裂抗拉强度;掺入PANF后可改善陶粒混凝土在达到峰值极限荷载后的脆性破坏特性,在600℃内可有效提高陶粒混凝土高温后的棱柱体抗压强度,在20~400℃内能有效减缓陶粒混凝土弹性模量的降低。  相似文献   

11.
复合纤维对高性能混凝土高温性能的影响研究   总被引:3,自引:0,他引:3  
张道玲  鞠丽艳 《工业建筑》2005,35(1):8-10,14
针对高性能混凝土的防火与抗爆裂性能低的特点 ,采用低熔点 (聚丙烯纤维 )及高熔点纤维 (钢纤维 )复合的方法 ,对高性能混凝土高温性能 (抗折强度、抗压强度及劈裂抗拉强度、抗爆裂性能 )进行改善。研究表明 ,80 0℃时 ,复合纤维混凝土的抗折强度剩余率约 15 % ,明显高于基准混凝土的抗折强度剩余率 (约6 % ) ;抗压强度剩余率约 15 % ,与基准混凝土的强度剩余率相当 (约 15 % ) ;劈裂抗拉强度剩余率约 2 0 % ,明显高于基准混凝土的抗折强度剩余率 (约 10 % )。另外 ,复合纤维对改善混凝土的抗爆裂性能特别有效 ,同时分析了复合纤维改善高性能混凝土高温性能的作用机理。  相似文献   

12.
《混凝土》2016,(8)
分别将钢纤维、聚丙烯纤维按照0.25%、0.5%、0.75%的体积掺加率,以体积比1∶1、1∶2、2∶1混杂后掺入C60混凝土基体中共浇筑30组抗压、抗折、劈裂抗拉试件,通过对其进行抗压、抗折、劈裂抗拉试验研究,分析纤维掺量和混杂比对高强混凝土基本力学性能的影响。结果表明:混杂纤维的掺入降低了混凝土基体的抗压强度,混杂纤维混凝土抗压强度随纤维掺加率增大总体呈下降趋势,相同体积掺加率下,抗压强度随着混杂比中钢纤维掺量的增加亦大致呈逐渐下降的趋势;混杂纤维的掺入对混凝土基体的劈裂抗拉强度有很大改善,混杂纤维混凝土劈裂抗拉强度随着体积掺加率的增加呈先下降后增高的趋势,但随混杂比的规律并不清晰;混杂纤维的掺入对混凝土基体的抗折强度均有较大幅度提高,混杂纤维混凝土抗折强度随纤维掺量的增大呈先升后降的趋势,同体积掺加率情况下,所有混杂比对纤维混凝土抗折强度影响的规律亦不一致。  相似文献   

13.
为了研究高温后玄武岩纤维增强混凝土(BFRC)的力学性能,对其受压性能、弹性模量、劈裂受拉性能进行了试验研究。结果表明:随着温度升高,BFRC的抗压强度降低。在相同温度下,随着玄武岩纤维含量的增加,BFRC的抗压强度先增大然后减小。400℃后,BFRC的弹性模量随温度的升高而减小,其下降速度远快于抗压强度的下降速度。温度对BFRC的抗拉强度有很大的影响。随着玄武岩纤维含量的增加,在一定温度下混凝土的劈裂抗拉强度在增加。  相似文献   

14.
通过对掺与不掺聚丙烯纤维的高强混凝土进行不同高温作用后的劈裂抗拉强度、抗压强度试验研究,探讨高强混凝土劈裂抗拉强度、拉压比随温度变化的规律。研究结果表明,随着温度的升高,混凝土中的凝胶体不断分解,内部结构不断破坏,高温后高强混凝土脆性增大,劈裂抗拉强度降低;与未掺纤维的高强混凝土相比,相同温度作用后掺有聚丙烯纤维的高强混凝土劈裂抗拉强度略有提高,并借助X射线衍射(XRD)试验,分析高温作用前后高强混凝土内部成分的变化,初步揭示高温对混凝土力学性能影响的机理。  相似文献   

15.
王义鹏 《混凝土》2016,(5):54-58
混凝土生产技术在不断改进和新材料的应用,纤维矿渣微粉材料的产生提高了混凝土结构性能。结合混凝土性能试验,研究纤维矿渣混凝土的在高温作用后的抗压强度、抗拉强度和抗折强度,得出以下结论:钢纤维矿渣微粉混凝土随温度的升高先增大后减小,分界点为400℃;钢纤维的掺入能够较好的提高钢纤维矿渣微粉混凝土试块高温后残余抗折强度,120℃为试块的抗拉强度的临界温度;温度升高,纤维矿渣微粉混凝土水分依次蒸发,烧失率增大,高温作用下部分混凝土破损,钢纤维增加烧失率,不同高温作用后,水泥浆体体结构的水化产物不密实,C-S-H凝胶网状结构破碎,骨料与水泥浆体的裂缝增大,随机性裂纹的存在能够较大的增加纤维矿渣混凝土爆裂的可能性。  相似文献   

16.
通过对超高性能混凝土进行高温加热和高温作用后立方体抗压强度试验,研究了超高性能混凝土高温作用后的表观特征、质量损失及力学性能。对比了单掺钢纤维、单掺聚丙烯纤维和混掺钢纤维和聚丙烯纤维对超高性能混凝土高温爆裂的抑制效果,考察了温度、纤维种类和掺量、骨料(石英砂和钢渣)对超高性能混凝土强度的影响。试验结果表明:混掺1%钢纤维和2%聚丙烯纤维能有效抑制超高性能混凝土高温爆裂,在高温作用后依旧保持完整形态;钢渣骨料混杂纤维超高性能混凝土具有优异的高温力学性能,在1 000℃高温作用后仍能保持67%的残余强度;随着温度的升高,超高性能混凝土立方体抗压强度整体上表现出先升高后降低的规律;在目标温度超过600℃时,高温增强了超高性能混凝土的延性。  相似文献   

17.
硅灰对剑麻纤维珊瑚混凝土的影响   总被引:1,自引:0,他引:1  
为研究硅灰对剑麻纤维增强珊瑚混凝土耐久性的影响,通过人工加速老化试验方法测定试块的立方体抗压强度值与劈裂抗拉强度值,探索硅灰抑制剑麻纤维在砂浆中老化的机理,为剑麻纤维增强珊瑚混凝土其它性能及应用提供参考。试验结果表明:试件的立方体抗压强度在试验前后没有发生明显变化;未掺入硅灰的试件的劈裂抗拉强度在试验后有所下降,降幅为13.88%;硅灰掺量为10%的试件的劈裂抗拉强度在试验后降幅为6.46%;当硅灰掺量为20%~30%时,试件的劈裂抗拉强度在试验前后变化不大。  相似文献   

18.
《混凝土》2016,(5)
混凝土生产技术在不断改进和新材料的应用,纤维矿渣微粉材料的产生提高了混凝土结构性能。结合混凝土性能试验,研究纤维矿渣混凝土的在高温作用后的抗压强度、抗拉强度和抗折强度,得出以下结论:钢纤维矿渣微粉混凝土随温度的升高先增大后减小,分界点为400℃;钢纤维的掺入能够较好的提高钢纤维矿渣微粉混凝土试块高温后残余抗折强度,120℃为试块的抗拉强度的临界温度;温度升高,纤维矿渣微粉混凝土水分依次蒸发,烧失率增大,高温作用下部分混凝土破损,钢纤维增加烧失率,不同高温作用后,水泥浆体体结构的水化产物不密实,C-S-H凝胶网状结构破碎,骨料与水泥浆体的裂缝增大,随机性裂纹的存在能够较大的增加纤维矿渣混凝土爆裂的可能性。  相似文献   

19.
本实验研究基于C30混凝土在粗骨料取代率为50%下掺入不同种类的纤维后,再生混凝土的主要力学性能。选择掺入的纤维有钢纤维、玻璃纤维、聚丙烯纤维。再生粗骨料选择龄期为40年的废弃建筑物混凝土。制作粗骨料取代率为50%再生混凝土标准土立方体试块(150 mm×150 mm×150 mm),标准棱柱体试块(150 mm×150 mm×300 mm),尺寸为150 mm×150 mm×550 mm试块。每种尺寸下制作3组试块。在三种试块的制备过程中分别加入钢纤维、玻璃纤维、聚丙烯纤维,观察其流动性、塌落度、保水性。入模后按混凝土标准实验的养护方法放置于养护室中养护28 d后测试其抗压强度、抗折强度、劈裂抗拉强度。对所得结论进行比较分析后得知在相同粗骨料取代率下对于掺入不同纤维的再生混凝土,其表现出了不同的物理力学性能。对于掺入钢纤维的,再生混凝土流动性降低、塌落度增大、保水性变差,但强度及抗折强度有所增加,劈裂抗拉强度无明显变化。对于掺入玻璃纤维的再生混凝土其流动性小幅增强、坍落度小幅减小、保水性基本不变,而抗压强度、抗折强度、劈裂抗拉强度均有一定的增强。对于掺入聚丙烯纤维的再生混凝土,其流动性增强,塌落度减小而抗压强度、抗折强度、劈裂抗拉强度均有一定的降低。对于上述结论可知,掺入玻璃纤维的再生混凝土相对来说性能更优越,建议选择该种混凝土进行推广。  相似文献   

20.
为研究橡胶粉对C60高性能混凝土高温后断裂性能的影响,对橡胶粉掺量为5%和8%的C60 HPC进行高温试验,测定不同高温后试件的抗压强度及劈裂抗拉强度,并基于双K断裂理论对试件进行三点弯曲断裂试验,计算断裂参数,绘制起裂韧度、失稳韧度随温度的变化曲线.结果表明,随着温度上升,C60 HPC抗压强度和劈裂抗拉强度呈下降趋...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号