共查询到18条相似文献,搜索用时 90 毫秒
1.
本文采用以PVP(聚乙烯吡咯烷酮)为分散剂和保护剂,TW80(吐温80)为表面活性剂,用抗坏血酸还原银氨溶液制备超细银粉。通过调节银氨溶液的浓度、PVP、TW80、抗坏血酸的加入量和滴加速度,设计正交实验,制备不同粒径的超细银粉,找出控制粒径的关键因素和粒径最小的优化条件。实验结果表明银离子浓度为0.125mol/L,TW80与硝酸银的重量比为1:1,抗坏血酸与硝酸银的重量比为1:2,滴加速度为1.25ml/min,PVP与硝酸银的重量比为1:1.5时得到的银粉的粒径最小。通过所制得的银粉,利用马尔文粒度仪测试银粉的平均粒径。通过改变超声波的强度、表面活性剂的加入量、泵速和超声时间得到一套较为准确的表征方案即超声波强度为20W/cm2,外置超声时间3min,内置超声时间3min,每次加入表面活性剂量为3滴,泵速为2650r/min。并用该方案对银粉的粒径进行表征,同时样品进行了透射电镜表征。结果表明所制得的银粉的形貌为球形或类球形,一次粒径约为100nm。 相似文献
2.
采用液相化学还原法,以聚乙二醇4000为分散剂,用抗坏血酸直接还原硝酸银溶液制备太阳能电池正极浆料用银粉。通过扫描电镜(SEM)、激光粒度分析仪和X射线衍射仪(XRD)等方法分析银粉的形貌、粒度及纯度,研究分散剂用量、抗坏血酸浓度、硝酸银浓度和溶液pH值等工艺条件对银粉粒度、物相结构及形貌的影响。结果表明,随着分散剂用量的增大,银粉颗粒粒度先减小后趋于稳定。在溶液pH值为4,抗坏血酸浓度和硝酸银浓度分别为2.0和0.5mol/L,聚乙二醇4000与硝酸银的质量比为0.10时,可以制得分散性好、纯度高、面心立方晶系和平均粒度为5.32μm的规则球形银粉。并将所得银粉调制成太阳能电池用浆料,通过丝网印刷在硅片上,使用四探针测试仪测得烧结膜的方阻为4.27mΩ/□,可满足太阳能电池的电性能要求。 相似文献
3.
4.
《中国粉体技术》2017,(6):32-35
以抗坏血酸为还原剂,硝酸银为反应前驱体,通过对液相体系分时间段取样研究液相还原法制备超细球形银粉的生长机理。借助扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱(EDS)仪、X射线衍射(XRD)仪、紫外吸收光谱(UV-Vis)仪和颗粒图像分析仪对银粉进行表征和分析。结果表明,以抗坏血酸还原硝酸银制得了平均粒度为0.543μm,球形度为0.926,分散良好的超细球形银粉;该氧化还原反应可自发进行,使被还原的银原子达到过饱浓度形成银原子团簇和细小的银晶核,银晶核主要以原子扩散控制生长和晶核聚集两种方式长大,最终获得表面自由能较小、粒度分布均匀的球形银粉。 相似文献
5.
《中国粉体技术》2016,(5):73-77
研究硝酸银浓度、抗坏血酸浓度、反应体系温度及pH值、添加剂种类及用量对液相还原法制备超细银粉形貌特征的影响,借助SEM、粒度仪、比表面仪和颗粒图像分析仪对银粉进行表征和分析。结果表明,pH值是同时影响银粉形状、粒度和分散性的显著因素,添加剂用量和抗坏血酸浓度分别是影响银粉形状及分散性的显著因素;随着pH值由2逐渐增大至10,银粉呈现由无规则多面体至棒状、类球形的形状变化,平均粒径逐渐减小;随着添加剂用量增加,银粉呈现由异形至球形、刺球型的形状变化,其用量质量分数为2.5%时颗粒球形度值最大;随着抗坏血酸浓度增加,银粉的分散性逐渐变差,其浓度为0.5 mol/L时分散性最好。 相似文献
6.
7.
8.
采用液相还原法制备超细银粉,以稀硫酸为分散剂,抗坏血酸为还原剂,硝酸银为银源,研究了反应物混合方式、硝酸银浓度以及温度对银粉特性的影响。分别采用激光粒度仪、扫描电镜、X-射线衍射仪及振实密度仪对所制备银粉的特性进行表征。确定较优工艺条件为:[AgNO3]=0.5mol/L,n(C6H8O6)∶n(AgNO3)=2∶1,分散剂与硝酸银质量比为10%,pH值为5,反应物混合方式为还原剂快速倾倒加入到硝酸银溶液中,反应温度为室温。较优工艺条件下所制备的银粉为单分散球形银粉,平均粒径为2.5μm,松装密度为2.5g/cm3,振实密度为4.6g/cm3。 相似文献
9.
10.
为了制备高性能银导体浆料,由直流电弧等离子体蒸发法制备超细银粉。采用自制银粉、有机载体和玻璃粉成功制备了厚膜导体浆料,并系统研究了烧结工艺对银浆导电性能的影响。结合X射线衍射、X射线荧光分析、透射电镜、扫描电镜、共聚焦激光扫描显微镜、热分析等分析手段,研究了银粉的形貌、纯度及浆料导带的形貌和热性能。结果表明:球形超细银粉的纯度高达99.92%(质量比),一次颗粒平均粒径为120 nm,粒径分布在40~250 nm之间。推荐最佳的浆料制备工艺为:银浆的组成选取为85%银粉、2%玻璃粉以及13%的有机载体,在800℃的峰值温度下保温10 min,该浆料的方阻为2 mΩ/□。 相似文献
11.
为了改善银粉颗粒的表面光滑度和均匀性,以硫酸亚铁铵为还原剂、AgNO3为原料和吐温65(TW65)为表面活性剂,通过液相还原法制备单分散球形微米银粉。研究了还原剂浓度、反应温度、表面活性剂用量等对银粉粒度分布的影响,并探讨了银粉的形成机制。研究确定较优工艺条件为反应温度为室温,还原剂与AgNO3的摩尔比为6∶1,TW65与AgNO3的质量比为5%。在较优工艺条件下制备出了粒度均匀单分散球形银粉,平均粒径为1.18μm左右,松装密度为2.4g/cm3,振实密度为4.9g/cm3,回收率达99.56%,基本达到了太阳能电池用银粉要求。 相似文献
12.
《Materials Letters》2005,59(29-30):3933-3936
Ultrafine copper powder was prepared in ethylene glycol in which sodium hydroxide was added. By the analysis of XRD, FTIR and SEM, a reasonable reaction mechanism was presented. The formation of copper powder and the oxidation of ethylene glycol were researched. 相似文献
13.
《Journal of Experimental Nanoscience》2013,8(3):223-228
The silver (Ag) powder was synthesised in a mechano-chemical (MC) process by inducing a solid-state displacement reaction between silver chloride (AgCl) and copper (Cu). The AgCl and Cu were ground in atmosphere conditions using a planetary ball mill. The reaction caused the mixture of AgCl and Cu to change the composition of the mixture, such as Ag and copper chloride (CuCl). CuCl was separated from MC product by leaching with ammonium hydroxide and we obtained Ag powder as the final product. Moreover, ascorbic acid (C6H8O6) was used as the additive to improve dispersion of Ag powder during MC process. The ground powders, formed in the presence of additive, were characterised by X-ray diffraction (XRD) and scanning electron microscope (SEM). The XRD determined that the reaction between AgCl and Cu was complete in almost all the experiments carried out. SEM examinations revealed that the size of the particles in the synthesised metallic Ag powder was in the range of 30–300 nm. 相似文献
14.
采用聚合物前驱体法制备了KLN纳米陶瓷粉体。研究了不同pH值、不同柠檬酸与金属离子物质的量比(CA:M^n+)以及不同退火温度对K-Li-Nb溶胶稳定性以及粉体组成的影响。实验结果表明:K-Li-Nb凝胶热分解过程分为3个阶段,KLN的生成温度在590~620℃左右:当柠檬酸与金属离子物质的量比(CA:M^n+)为3:l,前驱体溶液pH值控制在6~10内可以得到均匀透明的溶胶。pH=10的前驱体凝胶在850℃下煅烧后得到较纯的KLN纳米陶瓷粉体。 相似文献
15.
High purity fine silver powder with uniform particle morphology was prepared through glycerol process. The process involves
reduction of silver nitrate by glycerol under atmospheric conditions at a temperature below 175°C. Glycerol, din this process,
acts as a solvent as well as a reducing agent. The powders prepared through this process were characterized by X-ray diffraction
(XRD), scanning electron microscopy (SEM) and chemical analysis. The powders were well crystalline and contained oxygen, carbon
and hydrogen as impurities. Overall purity was better than 99.9%. The yield of silver powder was better than 99%. 相似文献
16.
17.
18.
A new and effective chemical reduction method for preparation of nanosized silver powder and colloid dispersion 总被引:1,自引:0,他引:1
Nanosized uniform silver powders and colloidal dispersions of silver were prepared from AgNO3 by a chemical reduction method involving the intermediate preparation of Ag2O colloidal dispersion in the presence of sodium dodecyle sulfate CH3(CH2)11OSO3Na as a surfactant. Several reducing agents such as hydrazine hydrate (N2H4·H2O), formaldehyde (HCOH) and glucose (C6H10O5) have been found to be preferable in this study from a practical point of view. The silver powder with the 60-120 nm particle size and colloidal dispersion with the particles size 10-20 nm and 0.5-2.0 wt.% concentration were successfully synthesized. 相似文献