首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of isostructural Pu(V) and Np(V) acetates of the general composition SrAnO2Ac3 · 3H2O (Ac = CH3COO?) was determined. The structures are based on complex anions [AnO2Ac3]2? and Sr2+ cations combined into a three-dimensional framework with water molecules located in framework cavities. The An(V) atoms are characterized by the hexagonal-bipyramidal oxygen surrounding; the equatorial plane is formed by the O atoms of three acetate groups. The coordination surrounding of the Sr atom is a tetragonal antiprism formed by the O atoms of acetate ions and water molecules. The bond lengths within the coordination sphere decrease in passing from Np(V) to Pu(V): the average An=O and An-O bond lengths are 1.828(5) and 2.549(6) Å for Np and 1.811(4) and 2.530(4) Å for Pu, respectively.  相似文献   

2.
The crystal and molecular structure of uranyl acetylacetonate dimer was determined by single crystal X-ray diffraction. The compound crystallizes in the tetragonal system, a = 7.9420(2), c = 40.1240(13) Å (at 100 K), Z = 4, space group P41212. Dimeric uranyl acetylacetonate molecules in the crystal are formed by bridging bonding of one of O atoms of the acetylacetonate ligands with U atoms, so that the coordination polyhedra of U atoms (distorted pentagonal bipyramids) share a common equatorial edge. The dimer has a nonplanar structure, being significantly bent along the conventional line connecting the bridging O atoms.  相似文献   

3.
The crystal structure of a previously unknown compound [CH3NH3][(UO2)(H2AsO4)3] was solved by direct methods and refined to R 1 = 0.038 for 3041 reflections with |F hkl | >-4σ |F hkl |. The compound crystallizes in the monoclinic system, space group P21/c, a = 8.980(1), b = 21.767(2), c = 7.867(1) Å, β = 115.919(5)°, V = 1383.1(3) Å3, Z = 4. In the structure of the compound, pentagonal bipyramids of uranyl ions, sharing bridging atoms with tetrahedral [H2AsO4]? anions, form strongly corrugated layered complexes [(UO2)(H2AsO4)3]? arranged parallel to the (100) plane. The protonated methylamine molecules [CH3NH3]+ form unidimensional tapelike packings parallel to the c axis and linked by hydrophilic-hydro-phobic interactions. The topology of the layered uranyl arsenate complex [(UO2)(H2AsO4)3]? is unusual for uranyl compounds and was not observed previously. A specific feature of this topology is the presence of monodentate arsenate “branches” arranged within the layer.  相似文献   

4.
The complex [UO2(OH)(CO(NH2)2)3]2(ClO4)2 (I) was synthesized. A single crystal X-ray diffraction study showed that compound I crystallizes in the triclinic system with the unit cell parameters a = 7.1410(2), b = 10.1097(2), c = 11.0240(4) Å, α = 104.648(1)°, β = 103.088(1)°, γ = 108.549(1)°, space group \(P\bar 1\), Z = 1, R = 0.0193. The uranium-containing structural units of the crystals are binuclear groups [UO2(OH)· (CO(NH2)2)3] 2 2+ belonging to crystal-chemical group AM2M 3 1 [A = UO 2 2+ , M2 = OH?, M1 = CO(NH2)2] of uranyl complexes. The crystal-chemical analysis of nonvalent interactions using the method of molecular Voronoi-Dirichlet polyhedra was performed, and the IR spectra of crystals of I were analyzed.  相似文献   

5.
The published data on complexation in the system Pu(NO3)4-HNO3-H2C2O4 were treated on the basis of a unified approach to determination of the oxalate ion concentration. Because of discrepancies between results published by different researchers, additional experiments on crystallization of Pu(IV) oxalate were carried out at widely varied excess and deficiency of oxalic acid. These experiments confirmed high stability of the complex cations PuC2O 4 2+ . The upper boundary of the field of metastable supersaturated solutions of Pu oxalate at the initial Pu concentration of 15–50 g l?1 was determined.  相似文献   

6.
The crystal structure of a previously unknown compound KNa3[(UO2)5O6(SO4)] [space group Pbca, a = 13.2855(15), b = 13.7258(18), c = 19.712(2) Å, V = 3594.6(7) Å3] was solved by direct methods and refined to R 1 = 0.055 for 3022 reflections with |F hkl | ≥ 4σ |F hkl |. In the structure there are five sym-metrically nonequivalent uranyl cations. They are linked by cationcation (CC) interactions to form a pentamer whose central cation is U(2)O 2 2+ forming two three-centered CC bonds. All the uranyl ions are coordinated in the equatorial plane by five O atoms, which leads to the formation of pentagonal bipyramids sharing common edges to form layers parallel to the (100) plane. The sulfate tetrahedron links the uranyl layers into a 3D framework. The K+ and Na+ cations are arranged in framework voids. A brief review of CC interactions in U(VI) compounds is presented.  相似文献   

7.
A new metal orthoborate compound, cobalt dinickel orthoborate, CoNi2(BO3)2 has been successfully synthesized for the first time. The title compound was synthesized by thermally-induced solid-state chemical reaction at 900°C between the initial reagents of Co(NO3)2 · 6H2O, Ni(NO3)2 · 6H2O and H3BO3 which were mixed with the mol ratio of 1: 2: 2 respectively. The obtained product was structurally characterized by X-ray powder diffraction technique. It has been found that the CoNi2(BO3)2 crystallizes in the kotoite type and isostructural with the compounds having the chemical formula M3(BO3)2 where M—Mg, Co and Ni. The synthesized compound belongs to the orthorhombic crystal system with the refined unit cell parameters of a = 5.419(9) Å, b = 8.352(0) Å, c = 4.478(8) Å and Z = 2. The space group was determined as Pnmn. Further characterizations by FTIR, elemental analysis and thermal analysis were also performed.  相似文献   

8.
The electrochemical behavior of graphite in polar solvent-H2SO4 electrolytes is studied in a wide range of H2SO4 concentrations. The results demonstrate that, with decreasing H2SO4 concentration, the charging curves become smoother and shift to higher potentials, the stage index increases, and intercalation compounds are more difficult to obtain. At H2SO4 concentrations of 50% and lower, graphite polarization is accompanied by a significant overoxidation, as evidenced by the anomalously small intercalate layer thicknesses: 7.75–7.85 Å. Anodic polarization of graphite in electrolytes consisting of H2SO4 and a polar solvent (H2O and C2H5OH) follows the same mechanism as in the case of the formation of graphite bisulfate. In going from water to C2H5OH, a less polar solvent, the intercalation threshold increases from 30 to 70% H2SO4. It is shown using a set of characterization techniques that, in the graphite-H2SO4-R (R = H2O, C2H5OH) systems, the solvent is not intercalated into graphite. Stage I–III ternary graphite intercalation compounds (TGICs) are synthesized for the first time in the graphite-H2SO4-C2H5COOH system: stage I TGICs at H2SO4 concentrations above 70%, stage II in the range 30–70% H2SO4, and stage III at H2SO4 concentrations down to 10%. The intercalate layer thickness in the TGICs is 7.94 Å. The mechanism of TGIC formation in this system is shown to differ from those in mixtures of H2SO4 and other organic acids. Thermal analysis in combination with spectroscopic analysis of gaseous products provides clear evidence for intercalation of propionic acid into the TGIC and indicates that the thermal stability of this compound is lower than that of graphite bisulfate.Translated from Neorganicheskie Materialy, Vol. 41, No. 2, 2005, pp. 162–169.Original Russian Text Copyright © 2005 by Shornikova, Sorokina, Maksimova, Avdeev.  相似文献   

9.
By melting a mixture of high-purity oxides in a platinum crucible under flowing purified oxygen, we have prepared (TeO2)0.75(WO3)0.25 glass with a total content of 3d transition metals (Fe, Ni, Co, Cu, Mn, Cr, and V) within 0.4 ppm by weight, a concentration of scattering centers larger than 300 nm in size below 102 cm−3, and an absorption coefficient for OH groups (λ ∼ 3 μm) of 0.008 cm−1. The absorption loss in the glass has been determined to be 115 dB/km at λ = 1.06 μm, 86 dB/km at λ = 1.56 μm, and 100 dB/km at λ = 1.97 μm. From reported specific absorptions of impurities in fluorozirconate glasses and the impurity composition of the glass studied here, the absorption loss at λ ∼ 2 μm has been estimated at ≤100 dB/km. The glass has been drawn into a glass-polymer fiber, and the optical loss spectrum of the fiber has been measured.  相似文献   

10.
In a perchloric acid solution, XeO3 does not oxidize Pu(IV), but the addition of H2O2 leads to the accumulation of Pu(VI). It is assumed that Pu(IV) forms a complex with XeO3. The reaction of the complex with hydrogen peroxide generates OH radicals, which oxidize Pu(IV) to Pu(V). The latter disproportionates to Pu(IV) and Pu(VI).  相似文献   

11.
Epitaxial layers of NaAl3(BO3)4 (NAB) and YAl3(BO3)4〈Yb〉 (YAB〈Yb〉) containing up to 10 at % Yb have been grown by liquid-phase epitaxy on YAB substrates. Their growth kinetics have been studied at relative supersaturations of the high-temperature solution from 2 × 10?2 to 16 × 10?2. The ytterbium concentration in YAB〈Yb〉 has been shown to vary little during the epitaxial process. Near the edges of the substrate, the surface morphology of the layers is complicated by vicinals, which have a spiral form in the case of YAB〈Yb〉. On \(\{ 10\overline 1 1\} \) YAB substrates, homogeneous single-crystal NAB films have been grown.  相似文献   

12.
Thermal deformations of Na6(UO2)2O(MoO4)4 were studied by high-temperature powder X-ray diffraction. The compound crystallizes in the triclinic system, space group Р\(\bar 1\), a = 7.636(7), b = 8.163(6), c = 8.746(4) Å, α = 72.32(9)°, β = 79.36(4)°, γ = 65.79(5)°, V = 472.74(4) Å3. It is stable in the temperature interval 20–700°С. The thermal expansion coefficients (TECs) are α11 = 25.5 × 10–6, α22 = 7.8 × 10–6, and α33 = 1.1 × 10–6 (°C)–1. The orientation of the TEC pattern relative to the crystallographic axes is a33^Z = 45°, a33^X = 122°, a22^Z = 59°, and a22^X = 66°. The anisotropy of the thermal expansion is due to specific features of the crystal structure of the compound.  相似文献   

13.
In recent years, the fluorite-structured solid solutions with the general formula, (MF2)1-x(RF3)x (M = Ca, Sr, Ba, Pb and R is a rare-earth element or Y), have been the subject of numerous experimental studies focussed on their superionic properties. The overall cubic crystal symmetry (space group Fm3m) is conserved up to x ≶ xmax, where xmax ⊁ 0.4-0.5 depending on M and R. The zone centre phonons and phonon dispersion along three symmetry directions of the mixed superionic compound (BaF2)1-x(LaF3)x have been investigated by applying de Launey angular force model for x ≶ xmax. The calculated results are compared and explained with available experimental results.  相似文献   

14.
A new Np(V) chromate complex with outer-sphere sodium cations, Na3[NpO2(CrO4)2](H2O)5 (I), was synthesized from aqueous solution. Its composition and structure were determined by single crystal X-ray diffraction. The structure of I is based on anionic chains of the composition [NpO2(CrO4)2] n 3n, running along [010] and forming layers parallel to the (101) plane. The Na+ ions and water molecules of crystallization are arranged between the layers. The coordination polyhedra of the Np atoms (pentagonal bipyramids) are combined pairwise by sharing common equatorial edges formed by two bridging oxygen atoms of bidentate chelate-bridging CrO4 groups. The absorption spectra of I in the IR and visible ranges are presented.  相似文献   

15.
The electrical conductivity and viscosity of 1-hexyl-3-methylimidazolium bis(trifluorosulfonyl)imide, [C6mim] [(CF3SO2)2N], were measured at atmospheric pressure, between 270 K and 350 K, for samples with an amount of water not exceeding 200 ppm, as part of International Union of Pure and Applied Chemistry Project 2002-005-1-100. Water content was monitored before and after measurements, by coulometric Karl–Fisher titration. Special care was taken with ionic liquid manipulation in view of the measurement uncertainty budget. The uncertainties of the electrical conductivity measurements and of the viscosity measurements are estimated to be better than 2.0 % and 0.5 %, respectively. Results were compared with data from other authors, and all data were correlated as a function of temperature.  相似文献   

16.
We have prepared (TeO2)0.80(MoO3)0.20 glass samples containing 0.01 to 0.11 wt % chromium and determined their optical transmission in the range from 450 to 2800 nm. The glasses have been shown to have a strong absorption band centered at 660 nm. From the attenuation coefficient as a function of Cr3+ concentration in the glasses, we have evaluated their specific absorption coefficient, which has been shown to be 190 ± 2 cm–1/wt % at the maximum of the absorption band.  相似文献   

17.
The published structure data of trigonal beta-LaSc3(BO3)4 are incorrect because they are not compatible with the formula of the compound. After correcting the positional atom co-ordinates of one O atom the structure is found to be isotypic with CeSc3(BO3)4 which crystallizes with the huntite CaMg3(CO3)4 structure type.Response to paper, titled "Structure of medium temperature phase -LaSc3(BO3)4 crystal," by He MY et al., published in MRI, vol. 2, issue 6, pp. 345–348, DOI  相似文献   

18.
The article studies the dielectric properties, dc conductivity and ac conductivity of Be(IO3)2⋅4H2O single crystals. The dielectric constant ε has been defined for the three directions of the vectors a, b and c in the crystals in the temperature interval 280–340 K and frequency range 100 Hz–106 Hz. The crystals show strongly expressed anisotropy, at 20 C and frequency 100 Hz εa = 235, εb = 30 and εc = 85. The frequency dependence of ε is evidence of the presence of low-frequency relaxation polarization in the crystals. The activation energies of the three directions in the crystals have been derived from the temperature dependence of dc conductivity, and they are 1.03 eV, 0.836 eV and 1.2 eV respectively.  相似文献   

19.
We have measured the photoluminescence and Raman spectra of (Ga2S3)0.95(Sm2O3)0.05 crystals and identified the mechanism of the energy transfer from the host to the rare-earth ion and the vibrational modes of the constituent atoms.  相似文献   

20.
The compound (NH4)3[UO2(CH3COO)3]2(NCS) (I) was synthesized and examined by single crystal X-ray diffraction analysis. The compound crystallizes in the rhombic system with the unit cell parameters a = 11.5546(4), b = 18.5548(7), c = 6.7222(3) Å, V = 1441.19(10) Å3, space group P21212, Z = 2, R = 0.0345. The uranium-containing structural units of crystals of I are isolated mononuclear groups [UO2(CH3COO)3]? belonging to crystal-chemical group AB 3 01 (A = UO 2 2+ , B01 = CH3COO?) of uranyl complexes. The specific features of packing of the uranium-containing complexes in the crystal structure are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号