首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapid decolourization of Methyl Orange by Fenton-like mesoporous Fe(2)O(3)-SiO(2) catalyst has been reported. The effect of various parameters such as initial pH, initial H(2)O(2) concentration, Fe content in the catalyst and initial dye concentration on decolourization process were studied. The results show that 20mg of mesoporous Fe(2)O(3)/SiO(2) composite (with Si/Fe=10) was sufficient to decolourize 0.6 mg/ml of Methyl Orange in presence of 2 ml of H(2)O(2) at an initial pH of 2.93 within 20 min. The pH range for effective decolourization (≥90%) was found to be 1-3. Leaching tests indicated that the activity of the catalyst was almost unaffected up to three consecutive cycles although ≤0.2 ppm of Fe ion was leached into treated water in each run.  相似文献   

2.
Magnesium-palladium system was found to efficiently decolourize reactive black 5, sunset yellow FCF and tartrazine dyes. There is complete loss of visible range absorption peaks and extent of colour removal exceeded 95% within 24 h of reaction. There is appearance of new peak(s) in the UV region and/or gradual and significant shift of the lambda(max) in the UV range during 1-24 h of reaction of dyes with Mg/Pd system. LC-MS analyses following the reaction of dyes with magnesium palladium system suggest reductive cleavage of azo bonds and formation of amines as the end products. Kinetic analyses of dye decolourization indicate that the reaction follows first order kinetics. Agreement between the experimental and predicted Michaelis-Menten plots for the decolourization of reactive black 5, sunset yellow FCF and tartrazine dyes by Mg(0)/Pd(4+) system, suggests the correctness of Michaelis-Menten model for the prediction of dye decolourization rates by Mg(0)/Pd(4+) system. Our investigations reveal that Mg(0)/K(2)PdCl(6) system is more effective in decolourizing dyes as compared to Mg(0)/Pd(0)-alumina or Mg(0) alone. Results obtained from reuse experiments suggest that Pd(0) pellets have the potential for recycling which will make the treatment process cost effective. Mg(0)/Pd(4+) system was found to be efficient in decolourizing mixture of drimarene, remazol and procion dyes as well as raw effluent generated by textile dye manufacturing company.  相似文献   

3.
Production of biomass adapted to the degradation of a mixture of chlorobenzene (CB) and 1,2-dichlorobenzene (DCB) was investigated in a batch culture with substrates supplied by pulses. CB and o-DCB concentrations which gave the best adapted biomass productivity were determined and found to be 150 and 30 microl l(-1), respectively. The biomass productivity was 51 mg l(-1) h(-1). The biomass yield was 0.38 g of biomass dry weight per gram of substrate. The pulses of 200 microl CB and 40 microl o-DCB, were inhibitory to the bacterial culture. Among the metabolites, muconic acid was found in large quantities in the medium and in the cells. At a time between two pulses of 60 min, adding 150 microl CB and 30 microl o-DCB per each pulse, 7.6g l(-1) of biomass was obtained.The produced biomass served as an inoculum for the biotrickling filter which treated industrial waste gases contaminated by CBs.The method of adapted biomass production was described using CBs, but the degradation of any other toxic volatile pollutant can be improved using this technique.  相似文献   

4.
A new dye-decolorizing white-rot fungus was isolated and identified as Trametes trogii based on its ITS-5.8S rRNA gene sequence analysis and morphological characteristics. Laccase was the only lignolytic enzyme produced by this strain during solid substrate fermentation (SSF) in soybean cake, a solid agro-industrial residue used for the first time in enzyme production. The extracellular crude enzyme from T. trogii in solid substrate fermentation showed good activity in synthetic dye color removal, decolorizing 85.2% Remazol Brilliant Blue R (50 mg l(-1)), 69.6% Reactive Blue 4 (35 mg l(-1)), and 45.6% Acid Blue 129 (83.3 mg l(-1)) without the addition of redox mediators, 90.2% Acid Red 1 (10 mg l(-1)), and 65.4% Reactive Black 5 (18.3 mg l(-1)) with the addition of 1mM 1-hydroxybenzotriazole in 30 min. Native polyacrylamide gel electrophoresis (Native-PAGE) of the crude enzyme and effects of laccase inhibitors on decolorization corroborated the laccase as the major enzyme involved in the decolorization of dyes. The comparison of color removal by the crude culture filtrates and by the whole fungal culture on the solid substrate revealed the former was more advantageous.  相似文献   

5.
Biosorption of Reactive Black 5 (RB 5) dye onto dried Penicillium restrictum biomass was studied with respect to pH, contact time, biosorbent and dye concentrations. The effect of temperature on the biosorption efficiency was also carried out and the kinetic parameters were determined. Optimum initial pH, equilibrium time and biomass concentration for RB 5 dye were found to be 1.0, 75 min and 0.4 g dm(-3) at 20 degrees C, respectively. The maximum biosorption capacities (q(max)) of RB 5 dye onto dried P. restrictum biomass were 98.33 and 112.50mg (g biomass)(-1) at 175 mg dm(-3) initial dye concentration at 20 and 50 degrees C, respectively, and it was 142.04 mg (g biomass)(-1) at 200 mg dm(-3) initial dye concentration at 35 degrees C. The results indicate that the biosorption process obeys a pseudo-second-order kinetic model.  相似文献   

6.
7.
Soil samples collected from the vicinity of "Manpasand textile industry", located near Ichalkaranji, India were studied for screening and isolation of bacterial strains capable of degradation of textile dyes. A potential strain was selected on the basis of rapid dye degradation and later identified as Comamonas sp. UVS. Comamonas sp. UVS showed 100% decolorization of Direct Red 5B (DR5B) dye at 40 degrees C and pH 6.5. The maximum Direct Red 5B concentration decolorized was 1100mg/l in nutrient broth within 125h. A numerical simulation with the Michaelis-Menten kinetics model gives an optimal value of 16.01+/-0.36mgdye/gcell/h for maximum rate (V(max)) and 7.97+/-0.21mg/l for the Michaelis constant (K(m)). The induction in the activities of laccase and LiP was observed during decolorization. These enzymes were inhibited by the addition of sodium azide. The biodegradation was monitored by UV-vis, FTIR spectroscopy and HPLC. The GCMS analysis indicated the presence of 7-benzoylamino-3-diazenyl-4-hydroxy-naphthalene-2-sulfonic acid in degraded product of the dye. The germination of Triticum aestivum seeds was inhibited with DR5B treatment but not with the treatment of dye degradation products.  相似文献   

8.
An aerobic bioprocess was applied to Indigo dye-containing textile wastewater treatment aiming at the colour elimination and biodegradation. A combined aerobic system using continuous stirred tank reactor (CSTR) and fixed film bioreactor (FFB) was continuously operated at constant temperature and fed with the textile wastewater (pH: 7.5 and total chemical oxygen demand (COD): 1185 mg l(-1)). The CSTR is a 1l continuous flow stirred tank reactor with a 700 ml working volume, and operated with a variable wastewater loading rate (WLR) from 0.92 to 3.7 g l(-1) d(-1). The FFB is a 1.5l continuous flow with three compartments packed with a rippled cylindrical polyethylene support, operated with a variable WLR between 0.09 and 0.73 g l(-1) d(-1). The combined two bioreactors were inoculated by an acclimated microbial consortium and continuously operated with four total WLR. This system presented high COD elimination and colour removal efficiencies of 97.5% and 97.3%, respectively, obtained with a total hydraulic retention time (HRT) of 4 days and total WLR of 0.29 g l(-1) d(-1). The effects of WLR on absorption phenomena on the yield of conversion of substrate on biomass (R(TSS/COD)) and on the yield of conversion of substrate on active biomass (R(VVS/COD)) are discussed. The increase of WLR and the decrease of HRT diminished the performances of this system in terms of decolourization and COD removal explained by the sloughing of biofilm, and the washout phenomena.  相似文献   

9.
The study showed that Escherichia coli JM109 (pGEX-AZR), the genetically engineered microorganism (GEM) with higher ability to decolorize azo dyes, bioaugmented successfully the dye wastewater bio-treatment systems to enhance C.I. Direct Blue 71 (DB 71) decolorization. The control and bioaugmented reactors failed at a around pH 5.0. However, the bioaugmented one succeeded at around pH 9.0, the influent DB 71 concentration was 150 mg/L, DB 71 concentration was decreased to 27.4 mg/L in 12h. The 1-3% NaCl concentration of bioaugmented reactors had no definite influence on decolorization, DB 71 concentration was decreased to 12.6 mg/L in 12h. GEM was added into anaerobic sequencing batch reactors (AnSBRs) to enhance DB 71 decolorization. Continuous operations of the control and bioaugmented AnSBRs showed that E. coli JM109 (pGEX-AZR) could bioaugment decolorization. The concentrations of activated sludge and GEM were still more than 2.80 g/L and 1.5 x 10(6)cells/mL, respectively, in the bioaugmented AnSBR. All the microbial communities changed indistinctively with time. The microbial community structures of the control AnSBR were similar to those of the bioaugmented one.  相似文献   

10.
11.
Zhong W  Li Y  Sun K  Jin J  Li X  Zhang F  Chen J 《Journal of hazardous materials》2011,185(2-3):1249-1255
The contamination of groundwater by methyl tert-butyl ether (MTBE) is one of the most serious environmental problems around the world. MTBE degradation in a closed algal-bacterial symbiotic system, containing a mixed culture of Methylibium petroleiphilum PM1 and Chlorella ellipsoidea, was investigated. The algal-bacterial symbiotic system showed increased MTBE degradation. The MTBE-degradation rate in the mixed culture (8.808 ± 0.007 mg l(-1) d(-1)) was higher than that in the pure bacterial culture (5.664 ± 0.017 mg l(-1) d(-1)). The level of dissolved oxygen was also higher in the mixed culture than that in the pure bacterial culture. However, the improved efficiency of MTBE degradation was not in proportional to the biomass of the alga. The optimal ratio of initial cell population of bacteria to algae was 100:1. An immobilized culture of mixed bacteria and algae also showed higher MTBE degradation rate than the immobilized pure bacterial culture. A mixed culture with algae and PM1 immobilized separately in different gel beads showed higher degradation rate (8.496 ± 0.636 mg l(-1) d(-1)) than that obtained with algae and PM1 immobilized in the same gel beads (5.424 ± 0.010 mg l(-1) d(-1)).  相似文献   

12.
In this study, the successful decolorization and mineralization of phthalocyanine dye (C.I. Direct Blue 199, DB 199) by an advanced oxidation process (AOP), UV/H2O2, were observed while the experimental variables such as hydrogen peroxide dosage, UV dosage, initial dye concentration and pH were evaluated. The operating conditions for 90% decolorization of C.I. DB 199 and 74% removal of total organic carbon (TOC) were obtained for initial dye concentration of 20 mgl(-1), hydrogen peroxide dosage of 116.32 mM, UV dosage of 560 W and pH of 8.9 in 30 min. The pseudo-first order rate constant is a linear function of reverse of initial dye concentration. They linearly increased by incrementing UV dosage, yet were non-linear enhancement by increasing the hydrogen peroxide concentration. A higher pseudo-first order rate constant about 0.15 min(-1) was observed while hydrogen peroxide concentration within 5.82-116.32 mM. Moreover, the decolorization of C.I. DB 199 was observed to be more difficult than that of an azo dye, C.I. Acid Black 1, under the same operating conditions.  相似文献   

13.
The removal of reactive brilliant blue KN-R using growing Aspergillus fumigatus (abbr. A. fumigatus) immobilized on carboxymethylcellulose (CMC) beads with respect to initial dye concentration was investigated. Bioaccumulation was the dominant mechanism of the dye removal. According to the UV-vis spectra and the results of three sets of experiments, it could be concluded that the bioaccumulation using immobilized growing A. fumigatus beads was achieved by metabolism-dependent accumulation and metabolism-independent adsorption (15-23% proportion of overall dye removal), which included biosorption by mycelia entrapped in them and adsorption on immobilization matrix. The transmission electron microscope (TEM) images showed the intracellular structures of mycelia and the toxicity of dye. It was found that the fungus had a considerable tolerance to reactive brilliant blue KN-R at initial dye concentrations of <114.7 mg/l. Though at high initial dye concentrations the growth of mycelia was inhibited significantly by the dye molecules in the growth medium, the bioaccumulation capacity was not markedly affected and the maximum bioaccumulation capacity was 190.5+/-2.0 mg/g at an initial dye concentration of 374.4 mg/l. The bioaccumulation rates were not constant over the contact time.  相似文献   

14.
The effects of Cr(VI) and Cr(III) species on the activated sludge growth rate have been assessed for a batch growth system, for a range of chromium concentration between 0 and 320 mg l(-1). Cr(VI) was found to stimulate microbial growth for concentrations up to about 25 mg l(-1), exhibiting maximum growth stimulation at 10 mg l(-1), whilst the lethal dose was found to be between 80 and 160 mg l(-1). On the other hand, Cr(III) was also found to stimulate microbial growth for concentrations up to about 15 mg l(-1), (with a maximum stimulation concentration at 10 mg l(-1)), whilst the lethal dose was found to lie between 160 and 320 mg l(-1). The results indicate that Cr(VI) is more toxic to biomass at relatively high concentrations (higher than 70 mg l(-1)) whilst it has a more pronounced growth stimulation effect at relatively smaller concentrations (less than 25 mg l(-1)), compared with Cr(III).  相似文献   

15.
The oxidative decolourization and mineralization of three reactive dyes in separately prepared aqueous solutions C.I. Reactive Yellow 3 (RY3), C.I. Reactive Blue 2 (RB2) and C.I. Reactive Violet 2 (RV2) by using homogeneous and heterogeneous Fenton and UV/Fenton processes have been investigated. The effects of H(2)O(2), Fe(2+) and Fe(0) concentrations, Fe(2+)/H(2)O(2) and Fe(0)/H(2)O(2) molar ratios at pH 3 and T=23+/-1 degrees C have been studied. Optimal operational conditions for the efficient degradation of all three dye solutions (100 mg L(-1)) were found to be Fe(2+)/H(2)O(2)=0.5mM/20mM and Fe(0)/H(2)O(2)=2mM/1mM. The experimental results showed that the homogeneous Fenton process employing UV irradiation was the most effective. By using this process, the high levels of mineralization (78-84%) and decolourization (95-100%) were achieved. Pseudo-first-order degradation rate constants were obtained from the batch experimental data.  相似文献   

16.
Three-level Box-Behnken factorial design with three factors (pH, temperature and enzyme concentration) combined with response surface methodology (RSM) was applied to optimize the dye degradation of reactive red 239 (RR239), reactive yellow 15 (RY15) and reactive blue 114 (RB114) dyes by commercial laccase. Mathematical models were developed for each dye showing the effect of each factor and their interactions on colour removal. The model predicted for RY15 that a decolourization above 90% (after 24h) could be obtained when the enzyme concentration, temperature and pH were set at 109.8U/L, 39.2 degrees C and 6.6, respectively; whilst for RB114 and RR239 the temperature and enzyme concentration did not affect the decolourization (>90%) in the considered range and optimum pH value was found at 5.5-7.0 and 7.0-7.5, respectively. These predicted values were also experimentally validated. Average final values of responses were in good agreement with calculated values, thus confirming the reliability of the models of RY15, RB114 and RR239 decolourization.  相似文献   

17.
The ability of photoelectrocatalytic oxidation to degrade the commercially important copper-phtalocyanine dye, remazol turquoise blue 15 (RTB) was investigated. The best experimental condition was optimized, evaluating the performance of Ti/TiO2 thin-film electrodes prepared by sol-gel method in the decolourization of 32 mg L(-1) RTB dye in 0.5 mol L(-1) Na2SO4 pH 8 and applied potential of +1.5 V versus SCE under UV irradiation. Spectrophotometric measurements, high performance liquid chromatography, dissolved organic carbon (TOC) evaluation and stripping analysis of yielding solution obtained after 3 h of photoelectrolysis leads to 100% of absorbance removal from wavelength of 250-800 nm, 79.6% of TOC reduction and the releasing of up to 54.6% dye-bound copper (0.85 mg L(-1)) into the solution. Both, original and oxidized dye solution did not presented mutagenic activity with the strains TA98 and TA100 of Salmonella in the presence and absence of S9 mix at the tested doses. Nevertheless, the yielding photoelectrocatalytic oxidized solution showed an increase in the acute toxicity for Vibrio fischeri bacteria, explained by copper liberation during treatment.  相似文献   

18.
19.
A continuous fixed bed study was carried out by using dried Rhizopus arrhizus as a biosorbent for the removal of three reactive dyes; Gemacion (Procion) Red H-E7B (GR), a monoclorotriazine mono-azo type reactive dye; Gemazol Turquise Blue-G (GTB), a vinyl sulfone mono-azo type reactive dye and Gemactive (Reactive) Black HFGR (GB), a vinyl sulfone di-azo type reactive dye from aqueous solution. The effect of operating parameters such as flow rate and inlet dye concentration on the sorption characteristics of R. arrhizus was investigated at pH 2.0 and at 25 degrees C for each dye. Data confirmed that the total amount of sorbed dye decreased with increasing flow rate and increased with increasing inlet dye concentration for each dye. The column biosorption capacity of dried R. arrhizus was 1007.8 mg g(-1) for GR dye, 823.8 mg g(-1) for GTB dye and 635.7 mg g(-1) for GB dye at the highest inlet dye concentration of approximately 750 mg l(-1) and at the minimum flow rate of 0.8 ml min(-1). Thomas and Yoon-Nelson models were applied to experimental data to predict the breakthrough curves and to determine the biosorption capacity of the column for each dye useful for process design. Both models were found suitable for describing the whole dynamic behavior of the column with respect to flow rate and inlet dye concentration.  相似文献   

20.
In order to have energy and cost effective separation of dyes, a combination of advanced oxidation process (AOP) using Fenton's reagent and nanofiltration (NF) is proposed. Three combinations of AOP and NF are studied using a synthetic solution of eosin dye. Scheme-1 is AOP followed by NF. Scheme-2 is NF followed by AOP. And Scheme-3 is two-step NF. The concentration of eosin dye studied in the first step of each of the schemes is in the range of 70-200mg/l. The operating transmembrane pressures for NF steps are 552, 689 and 828kPa. The crossflow velocities are 0.46, 0.69 and 0.91m/s. The schemes are compared for permeate flux, permeate concentration and duration of operation. In Scheme-1, AOP is conducted for 30min, and then subjected to NF, whereas in Scheme-2, the time needed for AOP is more than 3h to achieve the concentration level of the dye below 1mg/l. Thus, it is found that Scheme-1 is superior to Scheme-2 due to lesser time requirement. However, Scheme-3 involving no AOP, is also suitable for dye separation as the final eosin concentration in the permeate falls below 1mg/l. Scheme-1 is found suitable for dye concentration of 70mg/l and the most appropriate composition of Fenton's reagent is 1665mg/l of H(2)O(2) and 347.5mg/l of FeSO(4)x7H(2)O. Suitable NF operating conditions in step 2 of Scheme-1 is transmembrane pressure of 689kPa and crossflow velocity of 0.91m/s. In Scheme-3, the suitable operating conditions for NF in both the steps are 828kPa transmembrane pressure and 0.91m/s crossflow velocity. Scheme-2 is found to be unsuitable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号