首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
As part of continuous research on the neurobiology of the locust, the distribution and functions of neurotransmitter candidates in the nervous system have been analyzed particularly well. In the locust brain, acetylcholine, glutamate, gamma-aminobutyric acid (GABA), and the biogenic amines serotonin, dopamine, octopamine, and histamine most likely serve a transmitter function. Increasing evidence, furthermore, supports a signalling function for the gaseous molecule nitric oxide, but a role for neuroptides is so far suggested only by immunocytochemistry. Acetylcholine, glutamate, and GABA appear to be present in large numbers of interneurons. As in other insects, antennal sensory afferents might be cholinergic, while glutamate is the transmitter candidate of antennal motoneurons. GABA is regarded as the principle inhibitory transmitter of the brain, which is supported by physiological studies in the antennal lobe. The cellular distribution of biogenic amines has been analyzed particularly well, in some cases down to physiologically characterized neurons. Amines are present in small numbers of interneurons, often with large branching patterns, suggesting neuromodulatory roles. Histamine, furthermore, is the transmitter of photoreceptor neurons. In addition to these "classical transmitter substances," more than 60 neuropeptides were identified in the locust. Many antisera against locust neuropeptides label characteristic patterns of neurosecretory neurons and interneurons, suggesting that these peptides have neuroactive functions in addition to hormonal roles. Physiological studies supporting a neuroactive role, however, are still lacking. Nitric oxide, the latest addition to the list of neurotransmitter candidates, appears to be involved in early stages of sensory processing in the visual and olfactory systems.  相似文献   

3.
Histamine is the neurotransmitter of photoreceptors in insects and other arthropods. As a photoreceptor transmitter, histamine acts on ligand-gated chloride channels. Another type of histamine receptor has been indicated in the insect central nervous system by binding pharmacology. This receptor is similar to the mammalian H1 receptors, which are G-protein coupled and thus utilize a second messenger system. The distribution of histamine-immunoreactive (HAIR) neurons has been studied in a few insect species: cockroaches, locust, crickets, honey bee, blowflies, and in Drosophila. In addition to its presence in photoreceptor cells, histamine is distributed in a rather small number of neurons in the insect brain. Many of these neurons have extensive bilateral arborizations that innervate several distinct neuropil regions, notably in the protocerebrum. Some patterns of histamine distribution are seen in all the species. On the other hand, the number and morphology of neurons differ between the studied species, and several major neuropils (central body, antennal lobes, mushroom bodies) are supplied by HAIR neurons in some species, but not in others. Thus it appears that there are some species-specific functions of histamine and on others that are preserved between species. Some of the histaminergic neurons may constitute wide field inhibitory systems with functions distinct from those of neurons containing gamma-amino butyric acid (GABA). Novel data are presented for Drosophila and the cockroach Leucophaea maderae and a comparison is made with published data on other insects.  相似文献   

4.
The morphology of the trigeminal ganglion in human fetus was investigated by means of the tract‐tracing method using the lipophilic dye DiI‐C18‐(3) (1,1′‐double octadecane 3,3,3′3′‐tetramethyl indole carbonyl cyanine‐perchlorate), hematoxylin–eosin (HE) stain, and three‐dimensional computer reconstruction models. The trigeminal ganglion was flat in the dorsoventral direction, and DiI staining revealed that the trigeminal ganglion cells were somatotopically distributed in the ganglion in a way that reflected the mediolateral order of the three branches. Ganglion cells of the ophthalmic nerve were distributed in the anteromedial part of the trigeminal ganglion, those of the mandibular nerve were in the posterolateral part, and those of the maxillary nerve were localized in the intermediate part. DiI labeled both ganglion cells and nerve fibers in the trigeminal ganglion; the ganglion cells varied in size and appeared as round‐ or oval‐shaped, the neurites connected the cell soma, and some bipolar neurons were also observed. The number of embryonic trigeminal ganglion cells did not significantly change with gestational age, but the cell diameter, area, and perimeter significantly increased. The motor root leaves the pons, runs along the sensory root, passes the ventral surface of the ganglion, and finally runs together with the mandibular nerve. The findings reported here elucidate the morphology, development, and somatotopic organization of the trigeminal ganglion and reveal the trigeminal nerve motor root pathway along the trigeminal ganglion and mandibular nerve in the human fetus. Microsc. Res. Tech. 76:598–605, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
The Orthopteran central nervous system has proved a fertile substrate for combined morphological and physiological studies of identified neurons. Electron microscopy reveals two major types of synaptic contacts between nerve fibres: chemical synapses (which predominate) and electrotonic (gap) junctions. The chemical synapses are characterized by a structural asymmetry between the pre- and postsynaptic electron dense paramembranous structures. The postsynaptic paramembranous density defines the extent of a synaptic contact that varies according to synaptic type and location in single identified neurons. Synaptic bars are the most prominent presynaptic element at both monadic and dyadic (divergent) synapses. These are associated with small electron lucent synaptic vesicles in neurons that are cholinergic or glutamatergic (round vesicles) or GABAergic (pleomorphic vesicles). Dense core vesicles of different sizes are indicative of the presence of peptide or amine transmitters. Synapses are mostly found on small-diameter neuropilar branches and the number of synaptic contacts constituting a single physiological synapse ranges from a few tens to several thousand depending on the neurones involved. Some principles of synaptic circuitry can be deduced from the analysis of highly ordered brain neuropiles. With the light microscope, synaptic location can be inferred from the distribution of the presynaptic protein synapsin I. In the ventral nerve cord, identified neurons that are components of circuits subserving known behaviours, have been studied using electrophysiology in combination with light and electron microscopy and immunocytochemistry of neuroactive compounds. This has allowed the synaptic distribution of the major classes of neurone in the ventral nerve cord to be analysed within a functional context.  相似文献   

6.
In this study, the presence and distribution of FMRFamide-like immunoreactivity in the alimentary tract of barnacle Balanus amphitrite were investigated. A net of nerve fibers strongly immunoreactive to FMRFamide-like molecules was localized in the posterior midgut and hindgut. Positive varicose nerve terminals were also localized close to the circular muscle cells and, in the hindgut, close to the radial muscular fibers. Besides this nerve fibers network, one pair of contralateral ganglia was localized in the hindgut, each of them constituted by two strongly FMRFamide-labeled neurons and one nonlabeled neuron. Their immunoreactive axons directed toward the hindgut and posterior midgut suggest an involvement of FMRFamide-like substances in adult B. amphitrite gut motility. The hindgut associated ganglia of barnacles seem to correspond to the terminal abdominal ganglia of the other crustaceans. Since they are the only residual gut ganglia in the barnacle's reduced nervous system, we can hypothesize that gut motility needs a nervous system regulation partially independent of the central nervous system.  相似文献   

7.
Dopamine is widely distributed in the crustacean nervous system and has a diverse array of physiological effects. Immunocytochemical studies of several species have shown that dopamine- and/or tyrosine hydroxylase-containing cells occur in all ganglia of the central nervous system and that processes from some of these cells link ganglia of the ventral nerve cord. This study describes the distribution of tyrosine hydroxylase-containing cells in the central nervous system of a crayfish (Orconectes rusticus) and compares this information to available data from other species. The distribution of tyrosine hydroxylase (an enzyme in the synthetic pathway between tyrosine and dopamine) in O. rusticus is similar to that reported for marine species. However, differences were observed in the number of neurons in some ganglia and in the axonal projections of the L cell, which were more extensive in O. rusticus than in other species studied thus far. We also review the physiological effects of dopamine in crayfish and other crustaceans, focusing on the amine's actions in the endocrine, cardiovascular, and nervous systems, and on behavior when injected into freely-moving animals.  相似文献   

8.
Pond snails have long been the subject of intense scrutiny by researchers interested in general principles of development and also cellular and molecular neurobiology. Recent work has exploited both these fields of study by examining the ontogeny of the nervous system in these animals. Much of this work has focussed upon the development of specific transmitter phenotypes to provide vignettes of neuronal subpopulations that can be traced from early embryonic life through to adulthood. While such studies have generally confirmed previous explanations of gangliogenesis in gastropods, they have also indicated the presence of several neurons that appear earlier and in positions inconsistent with classical views of gastropods neurogenesis. The earliest of these cells contain FMRFamide-related peptides and have anteriorly projections that mark the future locations of ganglia and interconnecting pathways that will comprise the postembryonic central nervous system. These posterior, peptidergic cells, as well as certain, apical, monoaminergic neurons, disappear and apparently die near the end of embryonic life. Finally, populations of what appear to be peripheral sensory neurons begin to express catecholamines by around midway through embryonic life. Like several of the neurons expressing a variety of transmitters in the developing central ganglia, the catecholaminergic peripheral cells persist into postembryonic life. Transmitter phenotypes, cell shapes and locations, and neuritic morphologies all suggest that many of the neurons observed in early embryonic pond snails have recognizable homologues across the molluscs. Such observations have profoundly altered our views of neurogenesis in gastropods over the last few years. They also suggest the promise for pond snails as fruitful models for studying the roles and mechanisms for pioneering fibres, cues triggering apoptosis, and contrasting origins and mechanisms employed for generating central vs. peripheral neurons within a single organism.  相似文献   

9.
The use of antisera directed against conjugates of histamine and serotonin has revealed the locations of neurons labeling for these transmitters in the nervous system of barnacles. Photoreceptors label for histamine but not serotonin and also satisfy a number of other criteria indicating that histamine is their neurotransmitter. Photoreceptors also take up radioactively labeled histamine but not serotonin. Within the barnacle's brain no somata are consistently found that label with antiserum against histamine, but one to three pairs of small cells, depending on species, label with antiserum against serotonin. The most impressive serotonin-like immunoreactivity in the brain, however, is in a pair of large fibers ascending through the circumesophageal connectives and ramifying extensively. Within the ventral ganglion, the only other ganglion in the barnacle, ten pairs of cells label with antiserum against histamine. These neurons are confined to the posterior portion of the ganglion but ramify extensively throughout the ganglion. Antiserum against serotonin labels about 15 cell pairs, depending on species, located throughout the ganglion. The positions of the arbors of many of these cells suggest that these amines have a role in modulating either the motor pathways underlying feeding or the visual pathways responsible for the detection of shadows.  相似文献   

10.
The vascularization of the cerebrum (cerebral cortex and basal ganglia) in the common tree shrew (Tupaia glis) has been studied in detail using vinyl injection and vascular corrosion cast/SEM techniques. It is found that the arterial supply of the cerebral cortex are from cortical branches of the middle cerebral artery (MCA) and of the anterior cerebral artery (ACA). These arteries are in turn branches of the internal carotid artery (ICA). In addition, the cerebral cortex receives the blood from the cortical branches of the posterior cerebral artery (PCA) that originates from the basilar artery (BA). These cortical arteries gives rise to rectilinear orientated intracortical arteries that are divided into dense capillary networks to supply the cerebral cortex. The capillary networks drain the blood into intracortical veins and then into the tributaries of major superficial cerebral veins. The basal ganglia (caudate and lentiform nuclei) are supplied by central or perforating branches of the ACA and MCA. These central or medullary arteries give rise to arterioles that ramify into dense capillary plexuses. The venous blood from both nuclei drains into venules and finally into the tributaries of internal cerebral veins. It is obvious that on the ventral aspect, the diameter of the lateral striate artery (LSA) and of the penetrating arterioles from the MCA are much smaller than that of the MCA. These arterioles have few side branches while the peripheral branches of the superficial cerebral arteries exhibit several series of branches that are gradually reduced in diameter before branching into intracortical arteries. This could be one of the reasons why the rupture of cerebral arteries in man mostly occurs in the those originating from the ventral surface rather than from the dorsolateral surface.  相似文献   

11.
Presynaptic inhibition of transmitter release from primary sensory afferents is a common strategy for regulating sensory input to the arthropod central nervous system. In the olfactory system, presynaptic inhibition of olfactory receptor neurons has been long suspected, but until recently could not be demonstrated directly because of the difficulty in recording from the afferent nerve terminals. A preparation using the isolated but intact brain of the spiny lobster in combination with voltage-sensitive dye staining has allowed stimulus-evoked responses of olfactory receptor axons to be recorded selectively with optical imaging methods. This approach has provided the first direct physiological evidence for presynaptic inhibition of olfactory receptor neurons. As in other arthropod sensory systems, the cellular mechanism underlying presynaptic afferent inhibition appears to be a reduction of action potential amplitude in the axon terminal. In the spiny lobster, two inhibitory transmitters, GABA and histamine, can independently mediate presynaptic inhibition. GABA- and histaminergic interneurons in the lobster olfactory lobe (the target of olfactory receptor neurons) constitute dual, functionally distinct inhibitory pathways that are likely to play different roles in regulating primary olfactory input to the CNS. Presynaptic inhibition in the vertebrate olfactory system is also mediated by dual inhibitory pathways, but via a different cellular mechanism. Thus, it is possible that presynaptic inhibition of primary olfactory afferents evolved independently in vertebrates and invertebrates to fill a common, fundamental role in processing olfactory information.  相似文献   

12.
The mud crab, Scylla olivacea, is one of the most economically valuable marine species in Southeast Asian countries. However, commercial cultivation is disadvantaged by reduced reproductive capacity in captivity. Therefore, an understanding of the general and detailed anatomy of central nervous system (CNS) is required before investigating the distribution and functions of neurotransmitters, neurohormones, and other biomolecules, involved with reproduction. We found that the anatomical structure of the brain is similar to other crabs. However, the ventral nerve cord (VNC) is unlike other caridian and dendrobrachiate decapods, as the subesophageal (SEG), thoracic and abdominal ganglia are fused, due to the reduction of abdominal segments and the tail. Neurons in clusters within the CNS varied in sizes, and we found that there were five distinct size classes (i.e., very small globuli, small, medium, large, and giant). Clusters in the brain and SEG contained mainly very small globuli and small‐sized neurons, whereas, the VNC contained small‐, medium‐, large‐, and giant‐sized neurons. We postulate that the different sized neurons are involved in different functions. Microsc. Res. Tech. 77:189–200, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Crustaceans have been used extensively as models for studying the nervous system. Members of the Order Decapoda, particularly the larger species such as lobsters and crayfish, have large segmented abdomens that are positioned by tonic flexor and extensor muscles. Importantly, the innervation of these tonic muscles is known in some detail. Each abdominal segment in crayfish is innervated bilaterally by three sets of nerves. The anterior pair of nerves in each ganglion controls the swimmeret appendages and sensory supply. The middle pair of nerves innervates the tonic extensor muscles and the regional sensory supply. The superficial branch of the most posterior pair of nerves in each ganglion is exclusively motor and supplies the tonic flexor muscles of that segment. The extension and flexion motor nerves contain six motor neurons, each of which is different in axonal diameter and thus produces impulses of different amplitude. Motor programs controlling each muscle can be characterized by the identifiable motor neurons that are activated. Early work in this field discovered that specific central interneurons control the abdominal positioning motor neurons. These interneurons were first referred to as "command neurons" and later as "command elements." Stimulation of an appropriate command element causes a complex, widespread output involving dozens of motor neurons. The output can be patterned even though the stimulus to the command element is of constant interval. The command elements are identifiable cells. When a stimulus is repeated in a command element, from either the same individual or from different individuals, the output is substantially the same. This outcome depends upon several factors. First, the command elements are not only identifiable, but they make many synapses with other neurons, and the synapses are substantially invariant. There are separate flexion-producing and extension-producing command elements. Abdominal flexion-producing command elements excite other flexion elements and inhibit extensor command elements. The extension producing elements do the opposite. These interactions insure that interneurons of a particular class (flexion- or extension-producing) synaptically recruit perhaps twenty others of similar output, and that command elements promoting the opposing movements are inhibited. This strong reciprocity and the recruitment of similar command elements give a powerful motor program that appears to mimic behavior.  相似文献   

14.
In the bird the carotid body is located between the distal (nodose) ganglion of the vagus nerve and the recurrent laryngeal nerve at the beginning of the common carotid artery, that is, the organ is located at the cervicothoracic border. The chicken carotid body receives numerous branches from the vagus and the recurrent laryngeal nerves. In addition, dense networks of the peptidergic nerve fibers immunoreactive for substance P, calcitonin gene-related peptide (CGRP), vasoactive intestinal peptide (VIP), galanin, and neuropeptide Y (NPY) are distributed in and around the carotid body parenchyma. The substance P- and CGRP-immunoreactive fibers are derived from both the superior and inferior ganglia of the vagus nerve. The VIP-, galanin-, and NPY-immunoreactive fibers originate from the 14th cervical ganglion of the sympathetic trunk. The endocrine organs including the thyroid gland, parathyroid glands, carotid body, and ultimobranchial gland are situated as a continuous series along the common carotid artery. The organs are supplied with arteries arising as one trunk from the common carotid artery. Glomus cells are widely distributed not only in the carotid body but also in the wall of the common carotid artery and around the common trunk and its branches. The glomus cells of the chicken carotid body exhibit intense immunoreactivity for serotonin, tyrosine hydroxylase, and chromogranin A. The cells located in the wall of the common carotid artery further express NPY mRNA and peptide. In the chickens exposed to isocapnic hypoxia for 35 days, 3-4-fold increase of the carotid body volume is induced and the carotid body glomus cells show enhanced synthetic and secretory activities. On the other hand, the cells in the wall of the common carotid artery display little changes after the long-term hypoxia, having different functions from the carotid body. The carotid body rudiment is formed in the lateral wall of the third branchial artery. The neural cells immunoreactive for TuJ1, PGP 9.5, and HNK-1, which are continuous with the inferior vagal (nodose) ganglion, first surround and then invade both the carotid body rudiment and the other portions of the third branchial artery, becoming glomus cells.  相似文献   

15.
Gonadotropin releasing hormone (GnRH) is a peptide that is conserved in both vertebrate and invertebrate species. In this study, we have demonstrated the distribution pattern of two isoforms of GnRH‐like peptides in the neural ganglia and testis of reproductively mature male abalone, H. asinina, by immunohistochemistry and whole mount immunofluorescence. We found octopus (oct) GnRH and tunicate‐I (t) GnRH‐I immunoreactivities (ir) in type 1 neurosecretory cells (NS1) and they were expressed mostly within the ventral horn of the cerebral ganglion, whereas in pleuropedal ganglia they were localized primarily in the dorsal horn. Furthermore, tGnRH‐I‐ir were strongly detected in fibers at the caudal part of the cerebral ganglia and both ventral and dorsal horns of the pleuropedal ganglia. In the testis, only octGnRH‐ir was found primarily in the granulated cell and central capillaries within the trabeculae. These results suggest that multiple GnRH‐like peptides are present in the neural ganglia which could be the principal source of their production, whereas GnRH may also be synthesized locally in the testis and act as the paracrine control of testicular maturation. Microsc. Res. Tech. 77:110–119, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
The spinal cord is a vital link between the brain and the body and mainly comprises neurons, glial cells and nerve fibres. In this work, nonlinear optical (NLO) microscopy based on intrinsic tissue properties was employed to label‐freely analyze the cells and matrix in spinal cords at a molecular level. The high‐resolution and high‐contrast NLO images of unstained spinal cords demonstrate that NLO microscopy has the ability to show the microstructure of white and grey matter including ventral horn, intermediate area, dorsal horns, ventral column, lateral column and dorsal column. Neurons with various sizes were identified in grey matter by dark spots of nonfluorescent nuclei encircled by cytoplasm‐emitting two‐photon excited fluorescence signals. Nerve fibres and neuroglias were observed in white matter. Besides, the spinal arteries were clearly presented by NLO microscopy. Using spectral and morphological information, this technique was proved to be an effective tool for label‐freely imaging spinal cord tissues, based on endogenous signals in biological tissue. With future development, we foresee promising applications of the NLO technique for in vivo, real‐time assessment of spinal cord diseases or injures.  相似文献   

17.
Paraganglia are associated with every branch of the rat vagus nerve except the pharyngeal branch. Some of the paraganglia closely resemble the glomus caroticum, whereas others appear like small, intensely fluorescent (SIF) cells of autonomic ganglia. The paraganglionic cells of SIF cell-like bodies (SLB) store catecholamines (the most abundant is probably noradrenaline) and in some cases neurotensin. The innervation pattern of SLB is variable and their physiological role remains unclear. Paraganglionic cells of glomus-like bodies (GLB) predominantly store dopamine and probably also to a lesser extent noradrenaline. These putative chemoreceptor organs receive sensory innervation from nodose ganglion neurons as revealed by degeneration experiments and by anterograde neuronal tracing. Substance P- and calcitonin gene-related peptide-immunoreactive fibres seen in the region of vascular entry into the GLB may account for some of these sensory fibres, but the peptide/classical transmitter stored in sensory terminals synapsing on paraganglionic cells is unknown. Ultrastructural immunocytochemistry revealed vasoactive intestinal polypeptide (VIP)-immunoreactive fibres lying in the interstitial space between paraganglionic cells and large capillaries. These fibres may originate from VIP-immunoreactive neurons, being frequently attached to GLB. The major difference between GLB and the glomus caroticum concerns their blood supply and related innervation: Arteries and arterioles do not penetrate into GLB and, accordingly, noradrenaline- and neuropeptide Y-containing nerve fibres are lacking within GLB. This peculiar arrangement of paraganglionic parenchyma and arterial blood supply may be one of the reasons for the different physiological properties of vagal and carotid arterial chemoreceptors.  相似文献   

18.
The mammalian pineal gland is innervated by peripheral sympathetic and parasympathetic nerve fibers as well as by nerve fibers originating in the central nervous system (central innervation). The perikarya of the sympathetic fibers are located in the superior cervical ganglia, while the fibers terminate in boutons containing small granular vesicles and a few large granular vesicles. Both noradrenaline and neuropeptide Y are contained in these neurons. The parasympathetic fibers originate from perikarya in the pterygopalatine ganglia. The neuropeptides, vasoactive intestinal peptide and peptide histidine isoleucine, are present in these fibers, the boutons of which contain small clear transmitter vesicles and larger granular vesicles. The fibers of the central innervation originate predominantly from perikarya located in hypothalamic and limbic forebrain structures as well as from perikarya in the optic system. These fibers terminate in boutons containing small clear and, in certain fibers, an abundant number of large granular vesicles. In rodents, the majority of the central fibers terminate in the deep pineal gland and the pineal stalk. From these areas impulses might be transmitted further caudally to the superficial pineal gland via neuronal structures or processes from pinealocytes. Several hypothalamic neuropeptides and monoamines might be contained in the central fibers. The intrapineal nerve fibers are located both in the perivascular spaces and intraparenchymally. The majority of the intraparenchymally located fibers terminate freely between the pinealocytes. However, some nerve terminals make synaptic contacts with the pinealocytes and in some species with intrapineal neurons. In fetal mammals, sympathetic, parasympathetic, and central fibers are also present. In addition, an unpaired nerve, connecting the caudal part of the pineal gland with the extreme rostral part of the mesencephalon, is present. This nerve is a homologue to the pineal nerve (nervus pinealis) observed in lower vertebrates.  相似文献   

19.
The origin of perivascular nerve fibres storing nitric oxide synthase (NOS) and co-localisation with perivascular neuropeptides were examined in the rat middle cerebral artery (MCA) by retrograde tracing with True Blue (TB) in combination with immunocytochemistry. Application of TB to the proximal part of the middle cerebral artery labelled nerve cell bodies ipsilaterally in the trigeminal, sphenopalatine, otic, and superior cervical ganglia. A few labelled cell bodies were seen contralaterally, suggesting bilateral innervation. In the parasympathetic sphenopalatine and otic ganglia, numerous TB-labelled cell bodies contained neuronal NOS (C- and N-terminal), vasoactive intestinal peptide (VIP), and pituitary adenylate cyclase activating peptide (PACAP). In the trigeminal ganglion, almost all TB-labelled cell bodies contained calcitonin gene-related peptide (CGRP) but only a few cells contained NOS. In the superior cervical ganglion, the majority of the TB-labelled nerve cells contained neuropeptide Y (NPY) but none of them contained NOS. Removal of the ipsilateral sphenopalatine ganglion caused a slight reduction in the number of perivascular VIP-, PACAP-, and NOS-containing fibres after 3 days in the MCA while there was no difference at 2 and 4 weeks after the denervation as compared to control. This indicates that the parasympathetic VIP-, PACAP-, and NOS-immunoreactive nerve fibres in the rat MCA originate from several sources.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号