首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用水热合成法制备红色荧光粉Ca0.70Sr0.18-0.15xMoO4:0.08Eu3+,xY3+.用XRD、荧光分光光度计、SEM对其物相、发光性能以及形貌进行测试和表征.结果表明:荧光粉为CaMoO4物相结构.荧光粉粒径小且粒度分布均匀.荧光粉在395 nm和465 nm的吸收分别与紫外光和蓝光LED芯片输出波长相匹配.分别采用395 nm的近紫外光和465 nm的可见光激发样品,Ca0.70Sr0.18-0.15xMoO4:0.08Eu3+,xY3+荧光粉发红光,主发射峰位于616 nm.Y3+的引入,把自身吸收的能量和基质吸收的部分能量传递给发光中心,使Eu3+发光强度进一步增强.红色荧光粉Ca0.70Sr0.09MoO4:0.08Eu3+,0.06Y3+色坐标比商用的Y2O3:Eu3+红色荧光材料更接近于标准红色色坐标.  相似文献   

2.
采用静态浇铸成型和热固化的方法制得了基于红绿蓝三色紫外荧光粉的荧光树脂,并表征了其发光性质随荧光粉配比的变化。其中,选用的紫外荧光粉分别为线状发射红色荧光粉Y_(0.65)Bi_(0.3)VO_4:Eu_(0.05)~(3+)、宽带黄绿色荧光粉Ca_5Mg_4(VO_4)_6、商用窄带绿色荧光粉BaMgAl_(10)O_(17):Eu~(2+),Mn~(2+)和商用窄带蓝色荧光粉Sr_5(PO_4)_3Cl:Eu~(2+)。结果表明:通过改变环氧树脂中红绿蓝荧光粉的配比,能够获得在近紫外光激发下发出白光的荧光树脂,验证了不同荧光粉的添加比与荧光树脂发光光谱的关系;相比窄带发射的绿色荧光粉,基于宽带黄绿色荧光粉的白光荧光树脂表现出更高的显色指数。  相似文献   

3.
为提高磷酸钠钙红色荧光粉的发光强度,采用高温固相法制备了Na_(1.3)Ca_(0.4-x)Sr_xPO_4:0.3Eu~(3+)系列荧光粉,通过X-射线衍射仪(XRD)和荧光分光光度计分析该系列样品的物相结构、发光性能以及最佳掺杂浓度。XRD结果表明,Sr~(2+)取代Ca~(2+)占据中心格位,晶相有逐渐由NaCaPO_4向NaSrPO_4转变的趋势,结晶性能良好。荧光光谱分析表明,随着Sr~(2+)掺杂浓度的提高,在近紫外光区的395 nm和蓝色光区的465 nm处的激发峰强度均显著增强。由于掺杂离子之间电负性和离子半径的差异,导致电子云效应的形成和晶体场强度的降低,增大了~5D_0→~7F_2跃迁发射的能量,使得在618 nm处的发射峰强度明显提高,而且其峰位逐渐向短波长方向移动。当Sr~(2+)完全取代Ca~(2+)后,荧光粉发射强度提高了21%,表明Na_(1.3)Ca_(0.4-x)Sr_xPO_4:0.3Eu~(3+)是一种有望应用于白光发光二极管的红色荧光粉。  相似文献   

4.
采用液相混合-固相反应的方法,以硼氢化锂、非晶硅、金属Ca、Eu为原料,经1300℃保温4 h合成Ca_2Si_5N_8:Eu~(2+)荧光粉。采用X射线衍射仪(XRD)、透射电子显微镜(TEM)和荧光(PL)光谱仪等表征方法分析样品的物相组成、微观形貌以及激发和发射光谱等特性。研究结果表明:B~(3+)/Li~+共掺杂并未改变Ca_2Si_5N_8:Eu~(2+)荧光粉的晶体结构,合成样品除了主相为单斜晶系Ca_2Si_5N_8:Eu~(2+)外,还存在包覆在Ca_2Si_5N_8:Eu~(2+)荧光粉表面的BN相;B~(3+)/Li~+共掺杂Ca_2Si_5N_8:Eu~(2+)荧光粉的发光强度提高了2.27倍,在465 nm的蓝光激发下,发射峰位于604 nm。  相似文献   

5.
为了提高SrAl_2O_4∶Eu~(2+),Dy~(3+)荧光材料的发光强度和余辉时间,采用高温固相法合成了SrAl_2O_4∶Eu~(2+),Dy~(3+)荧光粉.利用X射线衍射仪、扫描电子显微镜和荧光光谱仪对产物的化学成份、结构、微观形貌和发光特性进行了分析.结果表明,SrAl_2O_4∶Eu~(2+),Dy~(3+)荧光粉的最佳煅烧温度为1 500℃,最佳煅烧时间为3 h.当Eu_2O_3的质量分数为2%时,Sr Al2O4∶Eu2+荧光粉的发光强度最大;当Eu_2O_3的质量分数为1.5%时,SrAl_2O_4∶Eu~(2+)荧光粉的余辉性能最好;当Eu_2O_3的质量分数为2%、Dy_2O_3的质量分数为4%时,SrAl_2O_4∶Eu~(2+),Dy~(3+)荧光粉的发光强度和余辉性能最好.  相似文献   

6.
采用硬脂酸对Sr_3SiO_5:Eu~(2+)荧光粉进行改性,通过XRD、IR、荧光光谱、SEM等表征以及沉降性、耐水性等方法对荧光粉的物相、发光性能、改性效果、表面形貌、化学稳定性等进行测试。结果表明,经硬脂酸改性后的Sr_3SiO_5:Eu~(2+)荧光粉晶体结构未改变,硬脂酸能很好地附着在Sr_3SiO_5:Eu~(2+)粉体表面。在改性时间2 h,改性温度40℃,硬脂酸与荧光粉质量比为1∶5时,Sr_3SiO_5:Eu~(2+)荧光粉的改性效果最好、发光强度损失较小且接触角为124.8°,具有很强的疏水能力;改性后的Sr_3SiO_5:Eu~(2+)荧光粉的耐水性和化学稳定性能有明显提高。  相似文献   

7.
采用高温固相法制备了掺杂Mn~(2+)离子的NaTaOGeO_4和Na_4Ca_3(AlO_2)_(10)荧光粉,并比较了Mn~(2+)离子在两种基质中的发光特性.研究表明:在248nm处的Mn~(2+)→O~(2-)电荷迁移跃迁的激发下,NaTaOGeO_4:Mn~(2+)荧光粉在576nm处有较强的属于Mn~(2+)离子的~(4 )T_1→~(6 )A_1能级跃迁的发射峰,其能量来源于基质的能量传递;而Na_4Ca_3(AlO_2)_(10):Mn~(2+)荧光粉,在540nm处有Mn~(2+)离子的~(4 )T_1→~(6 )A_1能级跃迁,由于该处无辐射能级跃迁的作用非常弱,导致Mn~(2+)离子的发光强度很弱.  相似文献   

8.
采用高温固相法制备了Ca_(1.9)(Si_(0.8)P_(0.2))O_4:Re(Re=Eu~(2+),Eu~(3+))系列发光材料,并对光致发光性能的影响因素进行了探究,主要包括煅烧温度、煅烧时间、稀土离子掺杂浓度等。经表征分析可知,制备Ca_(1.9)(Si_(0.8)P_(0.2))O_4:Eu~(2+)样品工艺条件确定为:煅烧温度、时间及掺杂Eu~(2+)浓度分别为1 275℃、4 h及4%。此样品最强激发波长为374 nm,最强发射波长为500 nm。色坐标结果显示样品发光处于绿光区域。制备Ca_(1.9)(Si_(0.8)P_(0.2))O_4:Eu~(3+)样品工艺条件确定为:煅烧温度、时间及掺杂Eu~(3+)浓度分别为1 300℃、4 h及6%。此样品最强激发波为394 nm,最强发射波长为589 nm。色坐标结果显示样品发光处于红光区域。  相似文献   

9.
采用高温固相反应在还原气氛中合成Ba_(1.3)Ca_(0.7-y-z)(Al_xSi_(1-x))O_4:yEu~(2+),zMn~(2+)白光荧光粉.研究硅铝摩尔比变化对荧光粉晶体结构和光谱性能的影响.XRD结果表明:改变硅铝摩尔比对荧光粉晶体结构基本无影响,晶相结构为Ba_(1.3)Ca_(0.7)SiO_4;荧光光谱显示在277 nm紫外光激发下,Eu~(2+),Mn~(2+)共掺杂的荧光粉的发射光谱覆盖425~550 nm蓝绿光波带和550~650 nm橙红光波带,最大发射峰位于454、593 nm,这两个发射宽带组合形成白光.  相似文献   

10.
采用氨热法,以金属Ca、Eu、非晶Si以及硼烷氨为原料,液氨为介质均与混合,经1230℃保温5h合成h-BN包覆的Ca_2Si_5N_8:Eu~(2+)红色荧光粉。X射线衍射(XRD)测试结果表明:是否掺杂硼并没有改变Ca_2Si_5N_8晶体结构,但掺杂硼的产物除存在Ca_2Si_5N_8主相外,还包含BN相;透射电子显微镜(TEM)分析结果得到:BN相呈透明状包覆在Ca_2Si_5N_8外表面,并与Ca_2Si_5N_8相呈共格相界;荧光光谱(PL)测试结果表明:硼掺杂Ca_2Si_5N_8:Eu~(2+)荧光粉的发光强度提高了约1.1倍,发射光谱红移20nm,其激发峰在465nm,发射峰位于590nm,硼掺杂有助于提高Ca_2Si_5N_8:Eu~(2+)荧光粉的发光性能。  相似文献   

11.
采用高温固相法,以糊精为还原剂,在温度为1 150℃、N2-H2(10∶1)的还原气氛中合成了S、Dy~(3+)掺杂的SrS:Eu~(2+)红色荧光粉材料。采用X射线衍射分析(XRD)、荧光分光光度计等对其物相与光学性能进行表征。结果表明,样品在蓝光(波长498nm)激发下,添加的S的质量分数为2%时,SrS:Eu~(2+)荧光粉发出的红光强度最强;Dy~(3+)的掺杂摩尔分数为1%时,试样发出的红光最强。其激发光谱是400~600nm的宽带激发光谱。  相似文献   

12.
采用水热法制备复合基质Y_xGd_(1-x)BO_3:Eu~(3+)荧光粉,以提升红色荧光粉的发光强度和量子效率。研究不同x值对Y_xGd_(1-x)BO_3:Eu~(3+)荧光粉形貌、发光性能与物相结构的影响,并在最佳的x取值下进行K~+离子掺杂制备出不同K~+离子掺杂量的Y_xGd_(1-x)BO_3:Eu~(3+):K~+荧光粉。采用X射线衍射仪、场发射扫描电子显微镜和荧光光谱仪等对样品进行表征。结果表明:当x为0.6时,Y_xGd_(1-x)BO_3:Eu~(3+)荧光粉的发光性能最好,发光强度与YBO_3:Eu~(3+)和GdBO_3:Eu~(3+)荧光粉相比分别提高了39.47%和75.77%,量子效率与YBO_3:Eu~(3+)和GdBO_3:Eu~(3+)荧光粉相比分别提高了60.53%和93.11%;当K~+的掺杂量为1%时,Y_(0.6)Gd_(0.4)BO_3:Eu~(3+):K~+荧光粉的发光性能最好,掺杂后发光强度提高了55.73%,量子效率提高了49.83%。该研究表明适量的K~+离子的掺入可以改善Y_xGd_(1-x)BO_3:Eu~(3+)荧光粉的光致发光性能。  相似文献   

13.
水热法合成GdBO_3:Tb~(3+)荧光粉,制备发光性能最佳的样品;在Tb3+最佳浓度时,掺入不同浓度的K+,对GdBO_3:Tb~(3+)荧光粉荧光性能进行调控,研究该荧光粉的发光强度、量子效率、物相结构、微观形貌。用荧光光谱仪(PL)、X射线衍射仪(XRD)、场发射扫描电镜(FE-SEM)等手段对材料性能进行表征。结果表明:GdBO_3:Tb~(3+)荧光粉为六方晶系,掺杂K+可以改善GdBO_3:Tb~(3+)表面形貌;Gd~(3+)∶Tb~(3+)∶K+等于20∶1∶5为其最佳掺杂比,此时可以提高GdBO_3:Tb~(3+)荧光粉的发光强度78.6%,增大量子效率21.8%。  相似文献   

14.
为了提高Zn O∶Eu~(3+)荧光粉体的发光强度并降低合成温度,利用高温机械力化学法合成了单相Zn O∶Eu~(3+)荧光材料.利用扫描电子显微镜、X射线衍射仪和荧光光谱仪对样品的结构、微观形貌和发光特性进行了表征.结果表明,Zn O∶Eu~(3+)荧光粉体的最佳反应温度为450℃,最佳球磨时间为3 h.当Eu~(3+)摩尔分数为2.5%、球料比为20∶1时,经450℃球磨3 h后制备的Zn O∶Eu~(3+)荧光粉体的发光强度最好.  相似文献   

15.
为研究铋层状钙钛矿结构(Aurivillius相)铁电陶瓷居里温度(Tc)及介电性能,采用传统固相反应法在1 100℃烧结5 h制备了不同价态元素K~+、Ba~(2+)、Y~(3+)协同置换A位Sr元素的Sr_(1-x)(YK)_(0.25x)Ba_(0.5x)Bi_4Ti_4O_(15)陶瓷,利用X射线衍射仪表征不同置换量陶瓷的物相,结果表明制备的陶瓷均为Aurivillius相,无杂相产生。采用精密阻抗分析仪测量了陶瓷在不同频率下的介电温谱,结果表明,所有陶瓷样品均表现出铁电相变,随替换量增多,陶瓷的居里温度T_c由518.2℃降低到514.5℃,T_c处的介电常数极大值由2 350下降到2 000。研究结果表明,表征结构失稳性的容忍因子参数对Sr_(1-x)(YK)_(0.25x)Ba_(0.5x)Bi_4Ti_4O_(15)陶瓷铁电相变有重要影响。  相似文献   

16.
采用高温固相法制备不同含量Gd3+敏化的白光荧光粉Ba1.3Ca0.65-xSiO4:0.02Eu2+,0.03Mn2+,xGd3+(x=0~6%).XRD结果表明:合成的荧光粉是六方晶系Ba1.3Ca0.7SiO4结构.荧光光谱测试表明:荧光粉在近紫外光275~410 nm具有较强吸收;且发射光谱由蓝绿光波带(425~560 nm)和橙红光波带(560~650 nm)组成.Gd3+的掺杂能够明显提高其发射强度,其中较佳Gd3+掺杂量为2%.Ba1.3Ca0.63SiO4:0.02Eu2+,0.03Mn2+,0.02Gd3+荧光粉的色坐标CIE为(0.343 1,0.331 8),色温Tc=5 010 K,显色指数Ra=81.7,是一种适合于近紫外光芯片InGaN激发的WLED用全色荧光粉.  相似文献   

17.
为了探究稀土离子掺杂铝硅酸盐的光温特性,本文采用燃烧合成法制备了系列荧光粉材料Ca_(1-3x/2)Al_2Si_2O_8:xEu~(3+)。X射线衍射结果表明掺杂Eu~(3+)离子不会改变基质CaAl_2Si_2O_8的晶体结构。荧光光谱结果表明该荧光粉在近紫外光区域具有较强吸收,当被波长为393 nm的近紫外光激发后,其最大特征发射峰为611 nm,且Eu~(3+)离子的最佳掺杂浓度为0.05。利用上升时间测温法研究了 CaAl_2Si_2O_8:Eu~(3+)荧光粉的光温传感特性,结果表明:随着Eu~(3+)掺杂浓度的增加,上升时间单调递减,但当掺杂掺杂超过0.100时就会发生淬灭。Ca_(0.985)Al_2Si_2O_8:0.01Eu~(3+)的相对灵敏度随温度的升高先增大后减小,并在520 K时达到最大值(0.024 K~(-1))。上述研究表明该荧光粉具备优异的温度传感性能,在测温领域具有广泛的应用前景。  相似文献   

18.
采用高温固相法合成了一系列Tb~(3+),Eu~(3+)掺杂的K3La(PO4)2荧光粉.通过X射线衍射,激发发射光谱以及荧光衰减曲线对样品进行了表征.结果表明,随着Tb~(3+)掺杂浓度的增加,K3La(PO4)2:Tb~(3+)荧光粉呈现蓝光至绿光.在K3La(PO4)2:Tb~(3+)荧光粉中加入Eu~(3+)后,存在着Tb~(3+)对Eu~(3+)离子的电偶极-电偶极相互作用的能量转移过程.当Eu~(3+)的掺杂量为9%时,能量转移效率高达85.89%.随着Eu~(3+)的加入,CIE坐标显示荧光粉的发射光颜色呈现绿色→黄色→橙色的渐变.因此K3La(PO4)2:RE3+(RE=Tb,Eu)可实现单相荧光粉的多色发射.  相似文献   

19.
采用固相法制备了KBaY(BO_3)_2:Sm~(3+)荧光粉,通过X射线衍射仪(XRD)及荧光分光光度计对其进行测试表征.结果表明,所制备的样品为纯净物相,Sm~(3+)进入到晶格中倾向于占据Y3+位点.在近紫外光(404nm)激发下,主要的发射峰位于573nm、610nm、657nm处.Sm~(3+)的最佳掺杂浓度为0.04,离子间进行能量传递的主要方式是多极相互作用中的偶极-偶极相互作用.最佳掺杂浓度下,荧光粉相关色温为2 765.07K,处于最佳色温区域,弥补了传统黄光荧光粉色温高的不足.  相似文献   

20.
通过共沉淀法制备得到La_(0.8)M_(0.2)CrO_3(M=Ca,Mg,Sr)作为阳极催化剂,分别以钇稳定氧化锆(YSZ)粉体和La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)(LSCF)粉体作为硫—氧燃料电池的电解质材料和阴极材料。发现在700~800℃时,La_(0.8)Ca_(0.2)CrO_3对硫—氧燃料电池具有明显的催化效果,测得800℃时单电池开路电压为560 mV。La_(0.8)M_(0.2)CrO_3(M=Ca,Mg,Sr)作为硫—氧燃料电池的阳极催化剂,催化效果为:La_(0.8)Ca_(0.2)CrO_3La_(0.8)Mg_(0.2)CrO_3La_(0.8)Sr_(0.2)CrO_3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号