首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
在管道运行中,时常伴随着蜡沉积现象的发生,这种现象会导致输量减少,严重时还会出现凝管事故。针对输送庆吉混油的松山⁃葫芦岛保温原油管段,自制了室内保温环道实验装置,建立了蜡沉积速率的逐步回归模型和支持向量机模型,对比验证结果表明,支持向量机模型的稳定性和准确性高于逐步回归模型。应用建立的蜡沉积速率模型对现场管段进行了不同季节的蜡沉积预测,为管道现场最优清蜡周期的确定提供理论参考。  相似文献   

2.
蜡沉积速率的逐步回归模型   总被引:1,自引:0,他引:1  
含蜡原油在管道输送过程中经常会有蜡析出,并有一部分蜡沉积到管道内壁上形成结蜡层。结蜡层对管道经济运行有一定的影响,它使管道的输送能力下降,严重时甚至会造成凝管事故,给管道运输造成很大的安全隐患。为了解决上述问题,必须研究含蜡原油管道的蜡沉积规律。针对影响蜡沉积速率的主要因素有管壁处的剪切应力,管壁处温度梯度,管壁处蜡分子浓度梯度和原油的动力粘度,在小型环道上对太庆原油进行管道蜡沉积试验,采用逐步回归的方法对实验数据作回归处理,从而建立了大庆原油蜡沉积速率模型,为进一步研究原油管道蜡沉积规律和管道优化运行奠定了基础。  相似文献   

3.
原油管道蜡沉积若干问题的研究综述   总被引:2,自引:0,他引:2  
我国多数油田生产的原油为含蜡原油。管道输送含蜡原油会带来很多问题:减少管道的有效通流截面,增大输送压力,降低输送能力,严重时还可能堵塞管道。为了解决沉积蜡的问题,应从原油管道蜡沉积的危害,原油管道蜡沉积的测试,影响管道蜡沉积的因素,以及原油管道如何防蜡、脱蜡、清蜡等方面去进行研究。  相似文献   

4.
含蜡原油在管道输送过程中经常会有蜡析出,并有一部分蜡沉积到管道内壁上形成结蜡层。结蜡层对管道经济运行有一定的影响,它使管道的输送能力下降,严重时甚至会造成凝管事故,给管道运输造成很大的安全隐患。为了解决上述问题,必须研究含蜡原油管道的蜡沉积规律。针对影响蜡沉积速率的主要因素有管壁处的剪切应力,管壁处温度梯度,管壁处蜡分子浓度梯度和原油的动力粘度,在小型环道上对大庆原油进行管道蜡沉积试验,采用逐步回归的方法对实验数据作回归处理,从而建立了大庆原油蜡沉积速率模型,为进一步研究原油管道蜡沉积规律和管道优化运行奠定了基础。  相似文献   

5.
长庆靖四至靖三联合站站间管线是靖安油田重要的外输含蜡原油管道。管线内壁蜡沉积给管道经济、安全、高效的运行带来了严峻的考验。首先制备了一系列的聚丙烯酸酯类防蜡剂,考察了防蜡剂的结构与结晶特性及其对长庆原油的流变性改善效果。结果显示,在添加400 mg/kg WI⁃2防蜡剂后,长庆原油凝点可下降10 ℃,反常点可下降8 ℃,非牛顿流体区黏度大幅降低。基于室内环道蜡沉积实验,研究了添加防蜡剂对长庆原油在不同管输条件下的蜡沉积特性的影响,回归了适用于靖四至靖三联合站站间管线的蜡沉积模型,并对现场的蜡沉积情况进行了预测,发现在不添加防蜡剂的情况下,结蜡模型对不同时间内结蜡层厚度的预测误差不超过5%;添加400 mg/kg WI⁃2防蜡剂的防蜡率可达88%~95%。  相似文献   

6.
根据石蜡沉积机理,考虑到在含蜡原油热输管道的实际运行中油温高、热流强度大、油流粘度比较小、剪切弥散的作用非常小,因此石蜡在管壁处的沉积主要是由于分子扩散形成的。应用Fick扩散方程来计算石蜡沉积扩散速率,并根据含蜡原油比热容随温度变化的一般规律,采用热力学与动力学相结合的方法推导出了计算含蜡原油热输管道管壁结蜡厚度的计算公式,并用对分法对公式进行求解,得到了管壁结蜡厚度与运行时间以及输送距离之间的关系,并画出了其关系曲线。采用该计算方法能够计算出任意时刻管道沿线任一点处的管壁结蜡厚度,模拟了沿管线长度管壁结蜡厚度的分布规律。此方法为确定管道的经济清蜡方案及保证管道安全运行提供了一定的理论依据。  相似文献   

7.
原油输送过程中因管壁结蜡而使输送能力降低,特别是在定压输送的情况下,当沉积层较厚的含蜡油管道在低温、低流速下输送时,可能发生初凝、停流现象,因此研究原油结蜡过程中管道结蜡层温度分布是非常有意义的。为此在实验室内,通过对试验环道上测试段相关数据的测试,对比分析测试段管壁有沉积物和无沉积物时测试段管壁内温度分布的不同表达式,根据能量方程建立了无量纲温度分布方程,利用贝赛尔函数推导出原油在层流状态下沉积层表面温度分布、沉积层热流密度、油流温度分布等相关温度场的计算公式,为研究蜡沉积规律,定性分析管路结蜡层厚度和制定合理的清管方案提供理论依据。  相似文献   

8.
目前阿赛线进站温度远高于凝点,且清管频繁。清管通球作业中蜡多,堵塞加热炉进口,过高的进站油温也使得加热炉过烧。利用普适性蜡沉积模型,预测了阿赛线不同进站温度下,正常工况及保温层破损条件下管输原油的蜡沉积规律。结果表明,阿赛线蜡沉积主要集中在进站处。据此提出了管道新的清管方案,并优选了新的进站温度。夏季和春秋季管道进站温度取35℃,冬季管道进站温度取40℃。现场数据表明预测结果和实际吻合良好,平均相对误差9.49%。  相似文献   

9.
原油输送过程中因管壁结蜡而使输送能力降低,特别是在定压输送的情况下,当沉积层较厚的含蜡油管道在低温、低流速下输送时,可能发生初凝、停流现象,因此研究原油结蜡过程中管道结蜡层温度分布是非常有意义的。为此在实验室内,通过对试验环道上测试段相关数据的测试,对比分析测试段管壁有沉积物和无沉积物时测试段管壁内温度分布的不同表达式,根据能量方程建立了无量纲温度分布方程,利用贝赛尔函数推导出原油在层流状态下沉积层表面温度分布、沉积层热流密度、油流温度分布等相关温度场的计算公式,为研究蜡沉积规律,定性分析管路结蜡层厚度和制定合理的清管方案提供理论依据。  相似文献   

10.
针对含蜡原油长输管道管内外情况均十分复杂的特点,详细研究了含特殊管段的含蜡原油长输管道,利用有限元法对热油管道处于不同工况下的热力模型进行了求解,并在计算过程中对特殊管段进行了巧妙的处理,最后通过算例详细分析了特殊管段对处于不同工况的原油管道热力特性的影响。结果表明,结蜡层的存在会使处于正常运行管道中的原油散热能力减弱,但却会使停输管道内的原油温降速率增大;而管道沿线浸水段的存在,不仅会使管道正常运行中末端油温偏低,还可能使管道在停输中中间浸水段的油温远远低于末端温度,严重影响对停输管道顺利再启动的判断。  相似文献   

11.
通过室内蜡沉积实验,建立了适用于杰诺原油的蜡沉积模型,并在满足安全运行的基础上,以日平均动力费用及日平均清管费用的总和即日平均运行成本为目标函数,建立了不加热输油管道的清管周期模型。结合临濮线临邑至赵寨子的站间运行数据,分析了不同出站温度、输量和季节对管道最佳清管周期的影响。结果表明,出站温度的降低会使管道日平均运行成本增加和最佳清管周期延长,输量的增加会使管道日平均运行成本增加和最佳清管周期缩短,地温的升高会使管道日平均运行成本先减小后增大,最佳清管周期延长。  相似文献   

12.
原油管道结蜡规律的灰色预测模型   总被引:5,自引:4,他引:1  
原油结蜡是影响管道安全、经济和高效运行的一个重要因素。为了对输油管道的结蜡状况进行预测,掌握输油管道结蜡的基本规律,应用灰色系统理论中的模型对输油管道的结蜡速度和结蜡厚度等指标的实际统计数据进行了灰色动态拟合,建立了相应的灰色微分方程和时间响应函数,结果表明,残差小于2%,模型精度满足工程实际需要;并在此基础上对实际输油管道的结蜡速度和结蜡厚度进行了预测。  相似文献   

13.
根据中国石油股份公司规划,针对 2008年以后秦京线输送冀东原油低输量运行需求,研究了冀东原油基本物性和流变特性,冀东原油最佳热处理温度是 60℃。筛选出针对冀东原油最佳改性效果的降凝剂,凝点降低幅度13 .5℃,降粘率86 .6%。制定了秦京线输送冀东原油 2 .8×106 t/a的运行方案。针对秦京线在低输量条件下的管道运行特性,包括热负荷能力、结蜡规律、能耗费用、最优清管方案和加剂原油流动性变化规律进行了深入研究,秦京线冬季工况下结蜡厚度最大值50 .24 mm,经济清管周期是 34 d。研究成果为秦京线 2008年以后输送冀东原油提供了安全保障和技术支持。   相似文献   

14.
建立了多约束条件清管周期优化模型,同时考虑了管道运行的动力费用、热力费用以及单次清管费用等经济性条件和最大蜡沉积厚度小于2mm等安全性条件。利用多约束条件清管周期优化模型对某含蜡原油管道冬季不同输量和进站温度的清管周期进行计算,综合考虑管道运行的经济性和安全性,给出了合理的清管周期。研究表明,输量减小,清管周期先增加后减小;进站温度升高,清管周期增加。同时研究了燃料油价格、电力价格和单次清管费用等价格因素对清管周期的影响。电力价格增加会导致清管周期减小,燃料价格和单次清管费用增加会导致清管周期增加。  相似文献   

15.
对低输量含蜡原油管道,每次清蜡时都保留一定的结蜡厚度,这是因为蜡的"保温"效果有利于管道的经济运行。然而,从安全的角度考虑,管线保留一定的结蜡厚度存在一定的风险。保留一定的结蜡厚度,管径变小,一旦管线停输或输量下降,管线中单位体积的原油所携带的热量减少,相对降温速率加快,原油形成胶凝结构的速度加快,管线允许的停输时间大大降低,并且管径越小管线停输后的再启动越困难。同时,管线停输后,在某些特殊管段特别是上倾管段,石蜡沉积物会发生破坏滑脱并聚集在管道低洼处,造成蜡堵凝管。因此,建议定期彻底清除管壁结蜡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号