首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 91 毫秒
1.
随着以电力电子装置为代表的非线性负载广泛应用于电网,电力系统中的谐波污染日益严重。加之用户对电能质量的要求越来越高,探索有效的谐波抑制和无功补偿方法逐渐提上日程。有源电力滤波器是一种新型的能抑制闪变无功和谐波的滤波器,以其优良的性能近年来受到广泛重视。谐波电流检测方法是决定有源电力滤波器(APF)性能的关键因素之一。在传统方法的基础上,结合自适应噪声消除技术,本文提出一种神经元自适应谐波电路检测算法,仿真结果证明该方法鲁棒性强,检测精度高,动态响应好。  相似文献   

2.
基于神经网络电流检测的有源电力滤波器研究   总被引:6,自引:0,他引:6  
给出了一种用于有源电力滤波器的神经网络谐波及无功电流检测方法,并对基于该方法的并联型有源电力滤波器进行了研究。给出了仿真结果和实验结果。  相似文献   

3.
自适应谐波电流检测方法用于有源电力滤波器的仿真研究   总被引:20,自引:2,他引:20  
李乔  吴捷 《电工技术学报》2004,19(12):86-90
通过对有源电力滤波器自适应谐波电流检测方法的理论分析和仿真试验,进一步验证了该方法的有效性和优越性.通过建立MATLAB仿真模型,研究了电网电压畸变、参考输入电压幅值和频率,以及积分增益变化对检测性能的影响,并得出有实用价值的结论.  相似文献   

4.
谐波电流参考信号的产生是保证有源滤波器补偿精度和性能的关键。本文在并联型有源电力滤波器的哎计中,采用基于滑动平均滤波器的id—iq算法提取正序及负序无功功率,采用基于滑动平均算法的DFT实现对谐波电流的提取,并住此基础上提出了频率自适应算法。针对殴备运行过程中的保护问题,采用RMS限流与峰值限流相结合的限流策略,以实现对设备的保护。仿真与实验结果,很好的验证了所提出算法的止确性,适合存APF工程实践应用。  相似文献   

5.
谐波污染严重地影响了电网的质量,目前抑制谐波的主流方法是使用有源电力滤波器。着重对有源电力滤波器中的谐波检测方法进行了阐述,介绍了各种方法的工作原理、优缺点以及应用情况,其中很多检测方法已经得到了应用并取得了良好的效果。  相似文献   

6.
准确、实时地检测出电网电流中的谐波成分是保证有源电力滤波器具备良好工作性能的关键.本文提出一种改进型的基于自适应滤波器的谐波电流预测方法,利用最小均方算法(LMS)对所需检测信号进行预测,通过该方法和基于瞬时无功功率理论方法相结合,可以解决谐波检测中存在的检测精度和检测实时性之间的矛盾.仿真结果证明了该谐波检测方法的有效性.  相似文献   

7.
在并联型有源电力滤波器的设计中,采用基于滑动平均滤波器的id-iq算法提取正序及负序无功功率,采用基于滑动平均算法的DFT实现对谐波电流的提取,并在此基础上提出了频率自适应算法。针对设备运行过程中的保护问题,采用RMS限流与峰值限流相结合的限流策略以实现对设备的保护。仿真与实验结果很好的验证了所提出算法的正确性,适合在APF工程实践中应用。  相似文献   

8.
针对传统自适应谐波检测方法在收敛速度和稳态精度之间存在的矛盾,提出了一种改进的新型自适应谐波电流检测方法.该方法基于自适应噪声对消理论,通过引入动态因子项自适应地调整算法的步长,引入动量项加快了权值的收敛,引入静态项和自相关误差项消除了不相关噪声序列的干扰,很好地解决了收敛速度与稳态精度的矛盾,进一步提升了谐波检测效果.仿真及实验结果证明了该改进检测法的可行性和有效性.  相似文献   

9.
以并列有源电流滤波器(APF)为模型,提出最小补偿电流原理与径向基函数神经网络相结合的谐波电流检测方法。仿真结果表明,该控制算法具有优越的稳态补偿精度、负荷变化适应性和动态性能。  相似文献   

10.
有源滤波器参考电流的自适应检测方法   总被引:1,自引:0,他引:1  
介绍了一种自适应滤波系统,用于快速准确地检测出有源江波器的参考电流,该方法采用干扰自适应对消原理实现自适应谐波及无功检测电路,具有较强的自适应性,不受负载或电网状态的变化影响,能满足有源能力滤波器对谐波及无功检测的要求,仿真结果证明了这种检测方法的有效性。  相似文献   

11.
叙述了有源电力滤波器APF(Active Power Filter)的基本原理,分别介绍了组成APF的谐波和无功电流检测电路、补偿电流发生电路的构成和功能,在此基础上,介绍了常用的APF的谐波和无功电流检测方法、补偿电流控制方法和直流侧电压控制方法。为了验证APF的补偿功能同时加深对其控制方法的认识和理解,用Matlab 6.5/Simulink下的SimPower Systems Blockset对整个三相并联电压型APF系统进行了仿真研究。仿真结果表明,电压空间矢量脉宽调制SVPWM(Space VectorPulse Width Modulation)控制的APF能对负载电流中的谐波和无功分量进行快速精确的补偿。  相似文献   

12.
基于自适应预测滤波器的谐波检测   总被引:4,自引:0,他引:4  
准确、快速地检测电力系统电流中的谐波成分是保证有源电力滤波器具备良好工作性能的关键。提出了基于自适应有限脉冲响应(FIR)预测滤波器的谐波实时检测系统。论述了自适应滤波器谐波检测原理.利用最小均方算法(LMS)对所需检测信号进行预测。采用Matlab进行了FIR的预测滤波器实验仿真。仿真说明该方法跟随性能好,在3/4个基频周期内就能跟踪上基波的变化。  相似文献   

13.
基于DSP和滑模变结构控制的三相三线有源电力滤波器   总被引:1,自引:0,他引:1  
针对滑模变结构控制方法在有源电力滤波器中的应用问题,提出了基于DSP的有源电力滤波器的谐波和无功电流实时检测方法,建立了三相三线有源电力滤波器电流控制回路数学模型,提出了滑模变结构控制方法,对该控制策略下三相三线有源电力滤波器的控制性能进行了分析,该方法跟踪的快速性好,系统的稳定性好,具有良好的纠偏能力。给出了基于该检测和控制方法的有源电力滤波器的仿真和实验结果,结果证明了该方案应用于有源电力滤波器的正确性和可行性。  相似文献   

14.
基于改进型自适应算法的谐波检测及其性能研究   总被引:1,自引:2,他引:1  
通过对有源电力滤波器基本自适应谐波电流对消检测方法的研究,指出了基本自适应方法存在检测精度和动态响应之间的矛盾,证明了基本自适应系统是一个关于中心角频率对称的陷波器.理论推导证明了由于系统权向量不为一个恒定的值,导致该系统不能准确提取谐波电流.在此基础上提出了一种改进型模拟自适应对消检测方法,讨论了改进型自适应系统的稳...  相似文献   

15.
有源电力滤波器的谐波电流检测环节决定系统的补偿性能。针对基于park变换的dq检测方法.对基于该方法的电流检测误差进行深入分析,包括锁相环鉴相的频率和相位误差对检测误差的影响.以及低通滤波器对检测误差的影响。探讨了不同电压环境下的误差形成原因,得出直流侧电压调整参考量在不平衡电压下影响检测精度等结论,并通过仿真验证。  相似文献   

16.
根据配电网10kV高压侧对大容量谐波抑制与无功补偿的要求,提出注入式混合型有源电力滤波器拓扑结构(IHAPF),详细阐述了IHAPF的谐波抑制特性.同时结合某铜箔厂大型整流装置谐波抑制和无功补偿的工程实例,介绍了IHAPF的设计方法和软硬件构成,并从项目成本和治理效果两方面分析了IHAPF的应用优势.  相似文献   

17.
为保障有源电力滤波器(Active Power Filter,APF)在超过其额定容量的工况下稳定运行,提出了一种基于负载谐波电流重构的限流策略,实现有源滤波器输出指定次谐波电流的精确限流。根据补偿后电网电流总谐波畸变率(THD)最小原则构建补偿结果的评价体系,通过对电流重构波形中各次谐波含量的调整,提出了一种有源滤波器的最优补偿方案。最后利用半实物平台进行了相关实验,对比分析了负载电流在稳态和动态下,谐波电流重构与传统方法的限流与补偿效果,验证了所提重构补偿方案的正确性与优越性。  相似文献   

18.
提供了一种大容量、低成本的注入式混合型有源滤波器以适用于高压系统同时进行谐波抑制和无功补偿,其中,利用大容量无源滤波器实现谐波抑制和无功补偿;采用有源滤波器改善系统滤波效果并阻尼无源滤波器与系统阻抗之间的串、并联谐振。讨论了采用检测电网电流的控制策略时,注入式混合型有源滤波器的工作原理,其基本思想是通过对有源部分进行适当控制来等效增大电网支路的谐波阻抗。从抑制电网阻抗与无源滤波器之间的串、并联谐振,改善无源滤波器的滤波效果以及提高整个系统的鲁棒性3个方面详尽分析了注入式混合型有源滤波器的稳态补偿特性。相关仿真结果及工程应用效果均证明了该混合型有源滤波器对于同时进行谐波抑制和无功补偿的可行性。  相似文献   

19.
有源电力滤波器(APF)电流检测算法使用低通滤波器(LPF)提取基波有功直流分量,直流分量的提取精度直接影响着指令电流信号的计算精度。提出一种应用数字递推最小二乘法(RLS)替代模拟LPF的电流检测新方法。RLS自适应滤波算法是在采样周期内对整体采样序列进行滤波器权系数最优化搜索,即对权系数迭代中的步长寻优,从而准确地跟踪输入信号的直流分量。新方法以瞬时无功功率理论为电流检测依据,利用坐标、三角变换矩阵根据电网三相瞬时电流计算出电流瞬时有功、无功交/直流分量。应用Matlab软件编写RLS自适应滤波算法程序进行仿真,结果表明APF电流检测中采用数字RLS自适应滤波提取直流分量的方法是可行、有效的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号