首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 96 毫秒
1.
根据某矿厚松散层、大采深、长工作面、机械化采煤条件下2个初采和1个重复开采工作面观测站实测资料,通过移动变形计算和规律分析,获取了基于概率积分法的地表移动变形预计参数,从地表移动持续时间、下沉状态、地表移动盆地特征、概率积分法参数等方面总结了重复开采与初采时地表移动变形规律的差异,为类似地质采矿条件下的重复开采地表移动变形规律分析提供参考。  相似文献   

2.
厚松散层及超薄覆岩厚煤层防水煤柱开采试验研究   总被引:5,自引:2,他引:5  
通过对厚松散层及超薄覆岩的含、隔水层及基岩风氧化带工程岩组性质的分析,采用相似模拟试验与数值模拟等手段研究不同采放比条件下覆岩最大冒高和有效导水高度。研究结果表明:基岩风氧化带内粘土矿物含量高、渗透能力差、再生隔水能力强,具有阻止和抑制导水裂高发展的双重作用,采动后覆岩呈整体弯曲缓慢下沉运动,有效导水裂隙带的发育高度与冒落带高度基本一致。研究结果应用于芦岭矿810#采区,在防水煤柱内进行放顶煤开采,经过两个工作面的成功试采,已安全采出煤炭约40×104t,采出率达86.7%,取得了显著的经济效益。  相似文献   

3.
近松散层采煤覆岩采动裂缝水砂突涌临界水力坡度试验   总被引:6,自引:1,他引:6  
以带不同尺寸裂缝的混凝土块模拟采动裂缝岩体,以黏土、粉土、粗砂和砾砂配制不同颗粒组成的7种土样,采用改装的渗透仪,对松散层经过采煤上覆垮落带和裂缝带发生渗透变形破坏的类型和机制进行研究,得出采煤垮落带和裂缝带上覆松散土层发生从上往下渗透变形破坏的临界水力坡度与土层粒度成分、物理力学性质和裂缝尺寸的关系.试验结果表明,黏粒含量较少的粉土、粗砂、砾砂比较容易发生水砂突涌,土的d50小于裂隙宽度的1/10时,容易出现潜蚀甚至涌(突)砂现象;当临界水力坡度大于1时,同一种颗粒组成的土样重度越大,液性指数越小,土的黏聚力越大,则临界水力坡度越大;同一种土样发生通过裂缝的渗透变形破坏时,裂隙宽度越大,临界水力坡度越小,发生破坏的临界水力坡度随裂缝宽度的增大呈指数下降.试验还获得溃砂时水砂涌出量与裂缝的宽度和初始水头高度的关系,在相同初始水头条件下,随着突砂口尺寸的加大,突砂量基本呈线性增加;在相同突砂口张开的情况下,涌砂量随着初始水头增大而增大.发生水砂突涌的涌出物中含砂量随时间延续逐渐减少.由此可见,含水层的初始水头和突砂口张开程度是控制矿井工作面突砂量的关键因素.  相似文献   

4.
深埋弱胶结薄基岩厚煤层采场动压显现强烈,顶板动载冲击作用下液压支架压死、损坏现象时有发生.为提高该类采场围岩控制效果,采用室内试验、理论分析和现场实测等手段研究厚冲积层作用下深埋弱胶结薄基岩顶板动载冲击效应产生机制,探究动载冲击力确定方法.结果 表明:深埋弱胶结薄基岩厚煤层采场覆岩采动裂隙萌生于高位厚冲积层,上行扩展导...  相似文献   

5.
对取自南海的珊瑚砂进行等向和K_0固结的三轴排水剪切试验,发现固结路径对珊瑚砂的剪切行为有显著影响。在此基础上,采用K_0固结条件,设计一系列不同围压和循环动应力比的长期排水循环加载三轴试验,研究得到珊瑚砂具有门槛颗粒破碎循环动应力比,安定性理论可用于解释不同动应力比长期循环加载下珊瑚砂的累积变形发展模式。基于静力和动力试验结果,引入相对偏应力水平,建立能反映初始固结状态和循环动应力比的珊瑚砂排水循环加载轴向残余累积应变显式计算模型,对预测循环荷载下珊瑚砂地基长期沉降有积极意义。  相似文献   

6.
循环孔隙水压力作用下饱和砂土变形的试验研究   总被引:2,自引:1,他引:2       下载免费PDF全文
波浪荷载的作用会在近海砂体基础中产生循环孔隙水压力,研究循环孔隙水压力作用下砂床土体的力学行为对海岸和近海工程有重要意义。本文选用福建标准砂为研究对象,自动控制水压力发生装置作为动力源,通过固结不排水三轴试验,研究分析了在循环孔隙水压力作用下影响饱和砂土变形性能的试验参数。试验结果表明,当固结应力比、频率较大,而相对密度较小时,试样有较大的变形,更容易发生破坏。最后,绘制了试样轴向应变与动孔隙水压力系数的关系曲线,并分析了曲线的变化规律。  相似文献   

7.
基于现场实测结果,结合数值模拟技术,对浅埋厚基岩松软顶板综放采场矿压特征的工作面长度效应进行系统的研究。研究结果表明:加长工作面长度对矿压特征有显著影响;超长综放工作面来压步距减小、采场支架受力均匀、矿压分布呈以工作面中部为对称轴的拱形分布、支架末阻力–初撑力为线性关系;工作面长度方向存在随工作面长度演化的“复合压力拱”;随工作面长度增加,煤壁前方支承压力峰值增大,工作面长度方向压力拱逐渐升高且扁平率趋于增大,表现为总体的矿压显现增加规律,利于顶煤的破碎;控顶区内顶煤下沉量 S 随工作面长度 L 的增大呈对数规律增大,随支架初撑力 P 的增大呈负对数规律减小;给定 S 后, P L 呈线性规律增加。研究成果可为工作面长度和支架的选择提供有益的借鉴和参考。  相似文献   

8.
海南省沿海地区分布着一种特殊的海湾相有机质浸染砂,为研究其动力特性,利用动三轴仪进行了不同围压和含水率下的动力变形特性及动强度特性试验研究。分析含水率、围压对其动应力-动应变关系、动弹性模量、阻尼比的影响。试验结果表明:在动应变不变的条件下,动应力随含水率的增多而减小,随围压的增大而增大;动弹性模量在含水率变化时,变化趋势较平缓;阻尼比随着动应变的增加而增大,随含水率的增大而减小。在围压改变时,阻尼比的变化不明显。为海南省海湾相有机质浸染砂地区构筑物的动力计算参数的选取提供参考依据。  相似文献   

9.
砂土液化及液化后流动特性试验研究   总被引:4,自引:0,他引:4       下载免费PDF全文
根据流体力学中的绕球定常黏性流动理论,在振动台试验的基础上,设计了一套砂土液化及液化后流动特性的试验装置。在振动台模型箱的砂土中埋入可以水平滑动的钢球,当砂土发生液化时使钢球发生水平运动,通过测量钢球所受的阻力来反算液化及液化后砂土的表观动力黏度,进而研究液化及液化后砂土的流动特性。试验中考虑了砂土的初始相对密度、钢球的运动速率、液化后砂土的超孔压比等因素的影响。试验结果表明,液化及液化后状态下砂土的表观动力黏度随着应变率的增大而减小,液化砂土呈现出剪切稀化的非牛顿流体特性。随着液化后超孔压比的降低,表观动力黏度也逐渐增大,通常随着应变率的增大,表观动力黏度–超孔压比曲线逐渐变缓。  相似文献   

10.
对冻融循环作用后的橡胶颗粒混合土(RST混合土)进行无侧限抗压强度试验,分析强度影响规律。结果表明,在28d养护龄期,虽然掺入橡胶颗粒的RST混合土抗压强度相对水泥土会降低,但是其抗冻融性能比水泥土强;冻融循环5次后,随着水泥掺量的增大,掺有橡胶颗粒的试件强度的提高率明显强于未掺入橡胶颗粒的试件;冻融循环5次后,橡胶颗粒的掺入从一定程度上减缓了由于含水量的不同而导致的RST混合土强度的降低速率。  相似文献   

11.
不同管片张开量下隧道外水土流失规律试验研究   总被引:1,自引:0,他引:1  
盾构隧道管片接缝漏水并导致管片外土体侵蚀、甚至发生漏水漏砂,是富水砂层中盾构隧道安全的主要风险。设计了一种模拟管片在不同张开量下土体流失状态的试验设备,对福建标准砂和天津典型细砂在不同管片张开量及水压下的土体流失状态进行了试验研究。试验揭示了管片外砂土逐步流失的机理,发现不考虑土颗粒作用的传统水密性试验会高估弹性密封垫的防水性能;提出了临界侵蚀张开量的理论公式,并通过试验结果初步验证了其合理性。研究表明,临界侵蚀张开量与土颗粒竖向所受应力和土层厚度成一次正比关系,与缝隙处水头、土体孔隙率成一次反比关系;当土体通过管片缝隙发生侵蚀后,侵蚀质量与管片张开量和水压成正比,与缝隙周围的有效应力大小成反比,侵蚀使福建标准砂级配曲线变得更加平缓;针对福建标准砂及天津细砂,提出了便于实际应用的考虑水压及管片张开量的土体流失状态评估方法。  相似文献   

12.
邵可 《山西建筑》2012,38(24):188-189
结合南昌轨道交通1号线一期工程施工实践,详细介绍了富水砂层盾构隧道洞门涌水涌砂处理措施,通过对涌水涌砂事故的分析总结了施工经验,为以后富水砂层中盾构隧道掘进防止洞门涌水涌砂提供了指导。  相似文献   

13.
通过实验研究了对流与混合对流条件下水流顺掠冰柱融化过程的相界面移动规律及传热特性。改变冰柱初始尺寸、初始冰柱温度、水流速度与温度等参数,采用工业摄像机记录了冰柱相界面的移动规律,构建了影像实验数据与冰柱相界面传热系数之间的映射关系。通过对实验结果的分析与讨论,获得结论如下:不同速度条件下的平均相界面位置变化趋势相似,相界面随时间呈单调递减幂函数形式变化;平均对流换热系数随水流速度或水流温度的增加而增大,且平均对流换热系数随时间呈递增趋势变化;在不同水流速度或水流温度条件下,Nu 随着Gr/Re 2先增大经过最高点后再减小;获得了水流顺掠冰柱融化过程 Nu 与Gr 、Re 、Pr 及 Ste 之间的经验关联式。  相似文献   

14.
高层建筑厚筏反力及变形特征试验研究   总被引:9,自引:2,他引:9       下载免费PDF全文
根据大型模型试验证明 ,高层框架及厚筏的刚度近似于箱型基础 ,当筏板厚度超过 1/ 6柱跨时 ,用倒梁法计算与整体分析法效果相近。利用局部荷载作用下计算筏板反力和沉降的方法按叠加原理 ,可近似求出多个塔楼作用下大面积厚筏基础的沉降  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号