共查询到20条相似文献,搜索用时 62 毫秒
1.
对超声波辅助复合酶法提取椪柑皮果胶工艺进行了优化研究。分析了不同预处理方法对果胶得率的影响;在单因素实验的基础上,采用Box-Behnken Design响应面优化得到最佳工艺条件为料液比1∶20(g/mL)、超声波功率187.5W、超声时间65.3min、复合酶用量(m半纤维素酶∶m纤维素酶=1∶1)5.6mg、pH4.82、温度41.8℃。在此条件下验证果胶得率为11.93%,说明优化工艺大大提高了果胶得率;所建模型能够较好地预测果胶得率;与单纯酶法相比,该工艺处理时间缩短了4~5h。 相似文献
2.
本研究以马家柚柚子皮为研究对象,采用复合酶法辅助超声波法优化了柚子皮中总黄酮的提取工艺。首先研究复合酶(纤维素酶:果胶酶)的配比、复合酶的用量、pH、料液比、酶解温度、酶解时间、超声功率和超声时间共8个要素因子对柚子皮中总黄酮得率的影响。在此基础上,先选用Plackett-Burnman试验设计确定了具有显著性影响的因子为:复合酶的用量、酶解温度、超声功率和超声时间,再选用Box-Behnken试验设计优化了柚子皮中的总黄酮提取条件。结果表明,酶法辅助超声波法提取柚子皮中总黄酮的提取条件为:复合酶的配比(纤维素酶:果胶酶)为3:2、复合酶的用量1.70%、pH4.5、料液比1:20 g/mL、酶解温度55.0℃、酶解时间60 min、超声功率183.00 W、超声时间41.00 min,在此条件下柚子皮中总黄酮得率为2.19%。 相似文献
3.
将超声波辅助提取与复合酶法提取两种独立的提取方法进行协同作用,以新鲜芦荟凝胶为原材料来提取芦荟凝胶多糖。分析超声波与复合酶的协同方式,复合酶的配比以及超声温度,超声时间等提取条件对新鲜芦荟凝胶提取率的影响,并利用响应曲面法对其影响显著的工艺技术参数进行优化,确定最佳提取工艺条件,以达到提高芦荟凝胶多糖提取率的目的。结果表明,超声波与酶解同时进行是最佳的协同方式,果胶酶1.0%,纤维素酶1.5%,中性蛋白酶1.0%为复合酶的最佳配比,在此基础上,以超声波协同复合酶法提取新鲜芦荟凝胶多糖的最佳条件为:超声温度为51℃,超声时间为52 min,提取液pH值为4.2。 相似文献
4.
5.
以大豆分离蛋白为原料,采用超声辅助复合酶酶解制备大豆多肽,以单因素实验为基础,选择复合酶添加量、酶解时间、酶解温度以及酶解p H为自变量,大豆多肽得率为响应值,采用响应面分析法研究各自变量及其交互作用对大豆多肽得率的影响,并对大豆多肽的相对分子质量分布进行测定。结果表明,影响大豆多肽得率的各因素强弱顺序为:酶解温度复合酶添加量酶解时间酶解p H;超声辅助复合酶酶解制备大豆多肽的最佳工艺条件为超声功率180 W、超声时间10 min、超声温度35℃、碱性蛋白酶与中性蛋白酶质量比3∶1、复合酶添加量2.04%、酶解时间4.0 h、酶解温度59℃、酶解p H 8.0,在此条件下大豆多肽得率为63.27%,相对分子质量大部分集中在1 000以下。 相似文献
6.
7.
8.
以玉米秸秆为原料,利用超声波-复合酶法制备低聚木糖,研究超声波温度、超声处理时间、复合酶比例、复合酶添加量、酶解时间对低聚木糖制备的影响。在单因素试验的基础上,采用Box-Behnken试验设计方案对制备条件进行优化,得出制备玉米秸秆低聚木糖的最佳工艺参数为:超声温度56℃,超声处理时间40min,添加0.8%(以玉米秸秆计)复合酶(木聚糖酶和纤维素酶按照2∶1的比例组成)并酶解30 min,在此条件下,酶解液中(以玉米秸秆计)还原糖含量为36.43mg/g、可溶性总糖含量为74.32mg/g、平均聚合度为2.04。高效液相色谱法成分分析得出低聚木糖糖液的主要成分是木二糖和木三糖。 相似文献
9.
牛蒡中富含菊糖.以牛蒡粉为原料,采用热水浸提法,以菊糖得率为评价指标,选择时间、温度、液固比和提取次数进行单因素试验,确定其条件范围,并采用响应面分析法优化影响提取工艺的主要参数.确定提取的最优条件为:时间65.11min,温度83.14℃,液固比10.13:1(mL/g),提取2次,菊糖得率为14.03%,与响应面模型所预测的菊糖得率14.16%相差不大.探讨了菊糖对乳酸菌和大肠杆菌生长的影响,试验表明:菊糖能促进乳酸菌的生长,而对大肠杆菌有抑制作用. 相似文献
10.
11.
为确定甜橙皮渣中川皮苷超声提取的最佳工艺,以甜橙皮渣为原料,在单因素试验基础上采用Box-Behnken试验设计和响应面分析方法,建立超声功率、超声时间、超声温度和料液比与川皮苷得率之间的数学模型。结果表明:回归方程显著,决定系数R2=0.9319,一次项和二次项对川皮苷得率有显著影响。超声波提取川皮苷的最佳工艺条件为料液比1:20(g/mL)、超声温度59.0℃、超声时间45min、超声功率120W。此工艺条件下,川皮苷得率为209μg/g,与模型预测值204μg/g相近。 相似文献
12.
13.
响应面法优化酶-超声波辅助同步提取紫薯花青素工艺 总被引:1,自引:0,他引:1
为提高紫薯花青素得率,采用酶-超声波辅助同步对紫薯花青素的提取效果进行研究。通过Box-Behnken试验设计和响应面分析确定酶-超声波辅助提取最佳工艺条件:体积分数0.1%的HCl-C2H5OH为溶剂(酸醇比为50∶50),纤维素酶提取温度51 ℃、料液比1∶20、酶添加量54 U/mL、超声功率100 W、时间33 min,此条件下花青素得率可达到(3.581±0.016)‰。酶-超声波辅助提取法与传统的有机溶剂浸提法相比,缩短了提取时间,花青素得率提高了2.73 倍;与微波法、超声波法相比,花青素得率分别提高了32.4%和17.8%。 相似文献
14.
15.
16.
响应面分析法优化酶提取甜茶茶多酚工艺 总被引:1,自引:0,他引:1
利用响应面分析法对复合酶辅助提取甜茶中的茶多酚的工艺进行优化。在单因素试验基础上选取因素与水平,根据中心组合的试验设计原理和响应面分析法,分析各个因素的显著性和交互作用,结果确定甜茶中的茶多酚的提取最佳工艺条件为:复合酶是由纤维素酶和果胶酶以3:4的比例混合而成;在45℃的水浴条件下,加酶量为0.6%(m/m)、pH4.95、酶解时间47.76min、料液比1:23.58(g/mL),酶解后的原料用体积分数40%的乙醇溶液、料液比1:28(g/mL)、温度70℃回流提取70min的条件下,茶多酚提取量可达133.2mg/g。 相似文献
17.
18.
响应面试验优化超声波辅助提取莲房原花青素工艺 总被引:2,自引:0,他引:2
在单因素试验的基础上,采用响应面试验研究乙醇体积分数、液料比、超声波功率和超声时间对莲房原花青素得率的影响,通过建立超声波辅助提取莲房原花青素的多元回归模型,优化莲房原花青素的提取工艺参数。结果表明,乙醇体积分数对莲房原花青素得率的影响最大,其次是液料比和超声波功率,超声时间对得率的影响相对较小。在乙醇体积分数45%、液料比21∶1(mL/g)、超声波功率700 W、超声时间15 min时,莲房原花青素得率最大,为6.81%,与模型理论预测值相近,说明该模型回归性良好,试验的拟合程度高,可以用于莲房原花青素得率的预测,为莲房原花青素作为天然抗氧化剂的应用提供一定的科学数据。 相似文献
19.
响应面法优化超声波辅助提取狭叶荨麻生物碱工艺 总被引:1,自引:0,他引:1
研究超声波辅助提取狭叶荨麻生物碱工艺。采用酸性染料法确定狭叶荨麻生物碱的最大吸收波长,并通过试验设计法优化狭叶荨麻生物碱的提取条件,得到最佳提取工艺为超声波作用时间15min、料液比1:10(g/mL)、乙醇体积分数85%、回流提取时间2h。 相似文献
20.
响应面试验优化超声辅助提取柚皮纤维素工艺 总被引:1,自引:0,他引:1
以柚皮为原料研究超声辅助提取纤维素的工艺条件,通过单因素试验,分别考察氢氧化钠质量浓度、提取温度、提取时间及过氧化氢体积分数对柚皮纤维素含量的影响。在此基础上,应用响应面分析氢氧化钠质量浓度、提取温度、提取时间及三者两两交互作用对响应值的影响,确定了柚皮纤维素提取的最佳工艺参数。结果表明:各因素对纤维素含量影响的显著性表现为提取温度>氢氧化钠质量浓度>提取时间,通过响应面法优化的最佳工艺条件为氢氧化钠质量浓度为9.4 g/100 mL、提取温度为84 ℃、提取时间为77 min,在此条件下柚皮纤维素含量为63.12%。 相似文献