共查询到19条相似文献,搜索用时 77 毫秒
1.
2.
风电机侧变流器中绝缘栅双极型晶体管(IGBT)模块运行时承受着复杂的多时间常数特性热载荷,是风电系统中最为薄弱的环节之一。然而现有研究更多是简单选取工作点数据或者仅考虑稳态工况以及无法考虑外部环境的长期随机变化。因此,本文建立了一种能够综合计及IGBT模块热载荷的复杂时间常数特性影响的寿命评估模型。分析了实际风电场中不同时间常数热载荷的寿命消耗特点,以及风速分布与寿命消耗之间的关系。研究了不同气温等效方法对寿命评估的影响规律,最后通过实验验证了该方法的准确性。结果表明,双馈风机中低频周期热载荷造成的寿命消耗更为严重,占到整体寿命消耗的64.42%。基频周期寿命消耗与风速概率密度具有严重的不对称性,超过60%的IGBT模块寿命主要消耗在低概率密度的高风速区间。气温等效方法对基频周期热载荷影响可以忽略不计,而忽略气温波动将导致低频周期寿命消耗评估结果减小12.26%。 相似文献
3.
考虑到变风速运行下风电变流器功率模块的结温波动既受到风速的影响,同时也存在由换流引起的基频结温波动。为了综合衡量这两个时间尺度下结温波动对变流器可靠性的影响,提出考虑不同时间尺度下结温波动特点的可靠性评估模型。针对受风速影响较大的长时间尺度结温波动,根据FIDES可靠性评估导则,引入热应力因子和温度循环因子对不同风速均值、风速湍流强度运行状态下的可靠性影响进行评估。针对由换流引起的短时间尺度下的基频结温波动,采用多状态概率评估思想将风速大小进行概率划分,并基于功率模块失效机理评估不同风速对功率模块故障率的贡献。最后,以某风场变流器为例,对其可靠性进行评估,并分析设计参数对可靠性的影响。文中结论对于制定检修计划,提高功率模块设计可靠度提供了依据。 相似文献
4.
结温波动是引起绝缘栅双极型晶体管(insulated gate bipolar transistor,IGBT)热疲劳失效的重要原因之一,降低其幅值能够提高IGBT模块的可靠性。该文提出一种基于寿命消耗分布规律的热管理控制策略。所提策略首先结合一整年的风速和气温数据,量化分析IGBT模块的寿命消耗分布规律,讨论需要被重点管理的结温波动类型和大小;然后,通过将结温阈值下限设定为最低环境温度,研究对低频结温波动实现有效抑制的结温阈值上限。结果表明,风电变流器应侧重于抑制IGBT模块幅值较高的低频结温波动,并且应计入长时间的任务剖面以便反映出结温波动的实际分布规律。案例和实验验证所提策略不仅可以有效抑制低频结温波动,而且显著降低IGBT模块的寿命消耗。所提策略为如何提高长时间运行工况下IGBT模块的可靠性提供一种新方法。 相似文献
5.
针对风电变流器运行功率随机变化可能导致其可靠性降低的问题,提出考虑功率大小及波动强度变化影响的变流器可靠性多状态概率评估模型。利用多状态概率分析法,以变流器输出功率大小和波动强度作为二维状态划分因子,对应其热应力因子和温度循环因子,建立变流器的元器件故障率统一计算模型。利用变流器元器件的结温计算方法,结合雨流法提取结温循环信息,建立风电变流器子系统级的可靠性多状态概率评估模型。以某风电场SCADA信息为例,比较了不同可靠性评估模型的收敛性,并分析功率大小和功率波动强度对机侧和网侧变流器故障率的影响。结果表明,所建立的可靠性评估模型更能合理反映功率变化对器件结温均值和结温波动的影响,评估的机侧变流器故障率比网侧更大,且随着功率波动强度增加,变流器故障率也增加。 相似文献
6.
以双馈风力发电中的转子侧功率变流器(RSC)为例,通过发电系统的功率关系和发电机稳态等效电路,推导出RSC基波频率的表达式,然后根据变流器中功率元件IGBT模块的损耗和热模型,分析了风速波动,电网低电压穿越(LVRT)等各种非平稳工况对IGBT功率模块热载荷特性的影响。结果表明:风速固有的快速变化和难以预测特性导致转子侧功率变流器长时间处于非平稳工况。IGBT模块处理的功率波动剧烈从而引起结温也随之发生剧烈波动,电网暂态故障后的LVRT使得变流器瞬时工况更加复杂。长时间非平稳工况下的热冲击导致IGBT模块的可靠性下降。该研究方法和研究结论为风电功率变流器的容量评估及可靠性分析提供了依据。此外研究还表明,风机系统的大惯性特性减少了发电机输出功率的高频波动。 相似文献
7.
高原地区人烟稀少,风资源丰富,是风电发展的下一个热点区域。介绍了高原环境的特点和气候参数,提出高原环境对变流器影响的因素和解决的方法。 相似文献
8.
9.
10.
风电全功率变流器参数对可靠性的影响分析 总被引:1,自引:0,他引:1
《电工技术学报》2015,(16)
风速的随机变化使得风电变流器处理变化的功率,导致器件的温度产生波动,影响变流器的可靠运行。现有的基于一个工作状态下的风电变流器可靠性评估,无法反映负载随机变化造成器件温度波动对变流器可靠性的影响。功率器件失效的主要形式为铝键合线失效与焊料层疲劳,本文综合考虑这两种失效因素,给出了可靠性评估模型和评估方法,分析了开关频率、功率因数及散热热阻的变化对风电全功率变流器可靠性的影响,并以1MW永磁同步风力发电机为例结合实际的风速及气温数据进行了验证。实例结果表明,开关频率与散热热阻的变化对变流器可靠性的影响比较大。根据分析结论,讨论了针对风电变流器的实际工作环境,考虑风速的概率分布,对利用变频或变散热条件的控制措施以提高变流器可靠性的可行性。结果表明,可通过根据风速等工况来改变开关频率和散热条件来提高变流器的可靠性。 相似文献
11.
针对功率变流装置中电力电子器件因承受随机波动温度载荷而诱发的热疲劳退化问题,以焊锡层热疲劳失效这种常见的失效模式为例,提出了一种预测电力电子器件热疲劳寿命的方法。以电力电子器件热疲劳退化机理为基础, 首先建立器件的电-热耦合模型,结合运行工况实时预测器件结温及不易直接测量的焊锡层的温度载荷;随后建立器件的热-机械耦合模型,计算不同特征温度载荷周期内累积的塑性形变,作为焊锡层热疲劳寿命模型的输入参数。结合以上两种模型以及Miner线性累积损伤理论即可实现任一工况下电力电子器件热疲劳寿命的预测。末尾举例说明了方法的有效性。 相似文献
12.
介绍了Stolov等人关于光纤涂层热老化失重、使用温度与光纤使用寿命之间关系的试验研究结果。通过此研究结果并结合电力通信光缆的实际应用情况研究证明:当OPGW、OPPC光缆的长期(一般指20年)使用温度为70~80℃时对光纤的传输性能和长期使用寿命不会产生影响。对于因雷击、短路电流而使OPGW、OPPC光缆产生的高温,只要其承受较高温度的时间足够短,也不会明显影响光纤的传输性能和长期使用寿命。此研究成果可供电力设计人员和运管人员参考。 相似文献
13.
针对目前的寿命评估方法不能满足高可靠、长寿命以及多故障模式竞争的电力电子器件寿命评估需求,提出了基于性能退化的电力电子器件寿命评估方法。通过收集电力电子器件的性能退化数据,建立其性能退化模型和寿命分布模型,给出性能退化模型和寿命分布模型的模型参数估计、模型拟合优度检验以及模型优选方法。考虑到电力电子器件具有多个性能参数的退化,提出电力电子器件竞争失效模型,实现对高可靠、长寿命以及多故障模式竞争的电力电子器件寿命快速评估。以某型绝缘栅双极型晶体管为例开展寿命评估,评估结果和试验结果差距较小,验证了该方法具有良好的准确性和有效性。 相似文献
14.
针对目前的寿命评估方法不能满足高可靠、长寿命以及多故障模式竞争的电力电子器件寿命评估需求,提出了基于性能退化的电力电子器件寿命评估方法。通过收集电力电子器件的性能退化数据,建立其性能退化模型和寿命分布模型,给出性能退化模型和寿命分布模型的模型参数估计、模型拟合优度检验以及模型优选方法。考虑到电力电子器件具有多个性能参数的退化,提出电力电子器件竞争失效模型,实现对高可靠、长寿命以及多故障模式竞争的电力电子器件寿命快速评估。以某型绝缘栅双极型晶体管为例开展寿命评估,评估结果和试验结果差距较小,验证了该方法具有良好的准确性和有效性。 相似文献
15.
16.
对于含大规模风电的电力系统,风电有功出力的易变性会引起并网点电压波动。针对传统方法为满足电压要求而导致无功补偿设备动作过于频繁的问题,应用电力系统综合分析程序(PSASP),对某省2015年含大规模风电电网进行稳态仿真计算,分析夏大负荷条件下不同风电出力断面,以网损作为评价指标,以无功补偿装置等设备的投切次数作为优化目标,提出一种能够适应风电大范围波动的无功设备投切策略。仿真算例表明,在风电出力大范围波动的情况下,该策略显著减少了无功补偿装置的投切次数。所得结论可为电力系统的运行调度及规划提供依据及参考,具有工程实用性。 相似文献
17.
环境温度对电动汽车充电负荷的影响分析 总被引:1,自引:0,他引:1
不同环境温度对电动汽车附加能耗、电池性能、行驶路况等影响显著,因而导致电动汽车充电需求的差异。分析环境温度对电动汽车充电负荷的影响,对深入研究充电负荷对电网的影响以及合理的充电设施规划等具有重要意义。提出考虑温度影响的电动汽车充电负荷计算方法,结合电动汽车平均续航里程、行车需求统计数据,采用蒙特卡洛模拟计算不同温度下多种类型电动汽车充电负荷。以广州市电动汽车充电负荷为例进行仿真计算,仿真结果表明环境温度对电动汽车充电负荷有显著影响,相较于常温天气,高温和低温天气条件下电动汽车充电负荷明显增加。不同类型电动汽车的充电负荷受环境温度影响程度不同,每日行驶里程更长的电动公交车充电负荷受环境温度影响更大。 相似文献
18.
19.
电子设备环境温度试验方法的研究 总被引:2,自引:0,他引:2
电子设备的高低温试验是电子设备生产定型的依据之一,在实际应用中单纯的高低温试验并不能完全体现出电子设备对环境温度的适应性,因此必须进行整个环境温度的适应性试验。本文根据电子设备环境温度试验中出现的问题,提出了电子设备环境温度试验的方法,此方法同样适用于电子设备的维修。 相似文献