首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
研究了萃取法从污酸中直接提取铼生产铼酸铵的可行性,确定了工艺流程与条件参数。  相似文献   

2.
采用酒石酸络合掩蔽干扰离子,过氧化氢氧化冶炼污酸中的低价铼为高价铼(Ⅶ),在5 mol/L氢氧化钠的介质中以丙酮萃取,ICP-AES进行测定。该方法消除了污酸中基体效应和大量干扰离子的影响,对该方法进行准确度,精密度,检出限及加标回收实验,精密度达到0.90%~2.54%,检出限达到0.0005μg/m L(197.312)、0.001μg/m L(221.426),检出下限0.002μg/m L(197.312)、0.004μg/m L(221.426),加标回收率96.0%~99.3%,结果准确,可靠。  相似文献   

3.
从废液中回收贵重金属铼   总被引:6,自引:0,他引:6  
叙述了从废液中回收贵重金属铼的废液成分,提取步骤及应用技术要点。  相似文献   

4.
优化萃取-反萃工艺条件回收污酸中铼,选取N235:仲辛醇:煤油=20:20:60作为萃取剂的配比,铼的萃取率为88.42%.负载有机相用氨水反萃时,选取浓度10%~12%氨水反萃时最优.采用污酸预处理-萃取-反萃工艺生产铼酸铵,预处理得到的铼液含Re为1.2g/L,萃前铼液的杂质总量≤0.4 g/L,铼的萃取率为98%...  相似文献   

5.
铼主要伴生于铜钼矿中,铜冶炼过程铼随烟气进入污酸中,由于污酸成分复杂且铼含量低,目前从铜冶炼污酸中提取分离铼的生产实例较少.本文综述了近几年国内外铜冶炼污酸中铼的提取分离技术研究进展,并对铼提取工艺的发展趋势进行展望.  相似文献   

6.
铜冶炼污酸中铼富集工艺技术研究   总被引:1,自引:2,他引:1       下载免费PDF全文
采用硫代硫酸钠为含铼污酸的沉淀剂,考察了硫代硫酸钠用量、反应时间和温度对铼和铜沉淀率的影响。在硫代硫酸钠用量1.15%、140 min、70℃的最优条件下,可有效实现污酸中铼和铜的深度沉淀,其沉淀率均为99%以上。表明本工艺实现污酸中铜、铼等有价成分提取分离在技术上是可行的。  相似文献   

7.
研究从富铼渣中回收并制备铼产品的工艺路线,着重考察药剂浓度、相比、时间等对铼萃取—反萃的影响,并探索进行了结晶制备高铼酸铵试验。结果表明,经过压力浸出,铼的浸出率达98%以上;在优化试验条件下,铼萃取率可达99.98%,反萃率达到99%以上,一次结晶所得高铼酸铵纯度为98.7%。  相似文献   

8.
在试液中加入EDTA和酒石酸以消除共存离子以及大量氟离子和硫酸的干扰,于pH 12~13的碱性介质中,用三氯甲烷萃取由四苯砷氯盐酸盐与铼形成的过铼酸四苯砷络合物,再用盐酸(1+1)反萃取铼,以氯化亚锡还原铼至铼,加入硫氰酸钾使其与铼反应生成硫氰酸钾-铼橙黄色络合物,用乙酸乙酯萃取该络合物后以乙酸乙酯定容,建立了硫氰酸钾光度法测定铜精矿冶炼污酸中铼的方法。实验表明:于6 mol/L盐酸介质中,在波长430 nm处,铼在0~50 μg/10 mL范围内符合比尔定律,相关系数(R2)为1.000 0,方法检出限为1.59×10-6 μg/mL。将实验方法用于铜精矿冶炼污酸合成样品中4.0~16.0 mg/L铼的测定,结果与理论值基本一致;将方法应用于铜精矿冶炼污酸实际样品中铼的测定,相对标准偏差(RSD,n=22)为0.72%~2.2%,回收率为99.8%~100%。  相似文献   

9.
采用移动密实床离子交换柱吸附—固定床离子交换柱解吸—蒸发冷却结晶等工序进行高温合金电溶液中铼的高效回收工业试验。结果表明,采用移动密实床交换柱吸附—固定床离子交换柱解吸和再生,可使整个离子交换系统连续运行;采用15BVs 8%NH4SCN溶液解吸铼时,可使流出液含铼浓度降至1mg/L;采用20BVs 2mol/L H2SO4溶液使树脂再生时,再生树脂对铼吸附率仍可达99.97%,且吸附后液含铼浓度可降至0.4mg/L;采用6倍理论用量CaCl2沉钼时,钼沉淀率为99.69%;最终所得铼酸铵产品纯度达到99.99%。  相似文献   

10.
介绍赤峰冶炼厂对传统的污酸中和处理系统进行改造,生产七水硫酸锌,五水硫酸铜及粗镉,回收钴渣的情况。  相似文献   

11.
粗铼化合物高铼酸、铼酸钾、铼酸铵是湿法冶金新工艺从铂铼废催化剂中回收铼得到的中间产品,生产要求对铼含量进行准确测定。取含铼约100 mg的高铼酸、铼酸钾、铼酸铵样品于烧杯中,加入水至总体积为50 mL,加热溶液或溶解样品,加入0.2 mL过氧化氢氧化铼为铼、5 mL EDTA溶液掩蔽干扰离子、45 mL氨水、10 mL四苯砷氯盐酸盐溶液沉淀铼,沉淀于烘箱中110 ℃烘除水分1 h,恒重,建立了四苯砷氯盐酸盐重量法测定粗铼化合物高铼酸、铼酸钾和铼酸铵中铼的方法。实验表明:于选定条件下,铼与四苯砷氯盐酸盐沉淀完全,铂等20种共存离子不干扰测定。将方法分别用于3个管理样品、6个实际样品中45.30~84.34 g/L、40.93%~69.42%铼的测定,测定值与参考值基本一致,相对标准偏差(RSD,n=7~11)为0.023%~0.085%,加标回收率为99.8%~100.1%。  相似文献   

12.
通过先测定铼粉产品中杂质元素总含量,再用差减法计算铼含量的方法较为繁琐。根据低温氢还原时,除了铼氧化物Re_2O_7、ReO_2,共存金属杂质元素和他们的氧化物均被还原为金属单质而不挥发外,其余非金属元素和他们的氧化物,以及水分、铵盐均会被挥发除去这一基本原理,实验提出了采用低温氢还原样品,以氢还原前后样品质量之比计算铼的含量,最终实现了氢还原重量法测定铼酸铵制备铼粉中铼的方法。确定的实验条件如下:样品量约1.0g;采用分段升温方式进行氢还原,其程序为先室温升温至200℃,恒温30min后升温至400℃,接着恒温30min后升温至600℃,最后再恒温30min;将盛有氢还原后铼粉的石英舟置于干燥器中冷却30min,恒重1次。实验方法适用于铼粉中不挥发杂质元素总质量分数不大于0.010%时铼的测定。将实验方法用于3个铼粉管理样品、4个铼粉实际样品中99.824%~99.995%铼的测定,测定值与参考值基本一致,相对标准偏差(n=9~22)为0.001 2%~0.003 3%,加标回收率99.99%~100.01%。  相似文献   

13.
采用“富铼渣浸出—浸出液预处理—萃取—反萃—结晶”工艺流程,研究了铜冶炼富铼渣提铼工艺,着重考察浸出工序中H2O2用量、硫酸浓度、浸出时间和浸出温度等对铼浸出率的影响,以及预处理工序中CaO用量对铼、砷回收率的影响。结果表明:在50 g富铼渣、H2O2用量150 mL、初始液固比2、初始硫酸浓度20 g/L、室温(20~25℃)搅拌浸出2 h的最优条件下,铼浸出率可达92.2%,砷浸出率达到96.6%;浸出液经过CaO预处理后,“预处理—萃取—反萃”工序铼总回收率超过98%,砷总回收率不到1.8%,实现了铼与砷的有效分离;一次结晶所得铼酸铵的纯度约为95%,铼结晶率为66%。  相似文献   

14.

铼是一种战略性金属,在军工、航天及航空领域具有重要的地位,由于其独特的性质成为了航空航天发动机中不可或缺的材料. 铼金属几乎没有独立矿床,其资源主要伴生于铜、钼等金属矿中. 铜矿中铼资源经过铜冶炼工序后富集到废弃的污酸当中,从污酸中回收铼成为铼冶金的重要研究内容. 本文综述了污酸中铼提取的主要技术难点,对现有的分离提取方法进行了阐述及对比,主要包括化学沉淀法、溶剂萃取法、离子交换法、吸附法等,分析了各技术现阶段存在的问题,为污酸中铼的分离提取技术发展提供参考. 最后展望未来,污酸中铼的分离提取应向绿色环保、短流程、高选择性的方向发展.

  相似文献   

15.
采用D296树脂吸附—NH4SCN溶液解吸—KReO4晶体析出—C160树脂除杂等工序从高温合金酸浸液中回收高纯铼酸铵。结果表明,铼吸附率可达99.03%;当NH4SCN溶液浓度为8%、NH4SCN解吸液与负载树脂体积比10∶1、解吸流速1BVs/h时,铼解吸率为99.55%;采用10倍理论用量KCl进行浓缩结晶得到KReO4,铼结晶率达到95.14%;再经C160树脂除杂—氨水中和—浓缩结晶—1次重结晶,制得纯度达99.995%的高纯铼酸铵。  相似文献   

16.
探讨了盐酸羟胺-钼(Ⅴ)-EDTA络合物掩蔽钼,硫脲-铼-氯化亚锡分光光度法选择性测定含钼粗铼酸钾中铼含量的方法。对盐酸羟胺-钼(Ⅴ)-EDTA掩蔽钼的体系及对硫脲-铼(Ⅱ)-氯化亚锡络合物显色的条件进行了优化。结果表明:于弱盐酸介质中,80℃水浴35min条件下,4mLEDTA溶液和3mL盐酸羟胺溶液能够掩蔽3.0mg钼,且络合掩蔽体系对显色络合物无影响:于3.0mol/L盐酸介质中,在吸收波长λ440nm处,铼质量浓度在0~20μg/mL范围内符合比尔定律,检出限为1.91×10-8μg/mL。方法用于含钼40%~50%的粗铼酸钾样品中10%~20%的铼含量测定,相对标准偏差(RSD,n=7)为0.15%~0.25%,回收率为100%。  相似文献   

17.
Recovery of rare earth (RE) elements from Nd-Fe-B waste is one of the ways to solve the problem of so-called RE-crisis. An alternative approach of extracting RE elements from Nd-Fe-B waste by molten Cu extraction based on liquid-solid diffusion and reaction is reported in this paper. The extraction process, product microstructure and extraction efficiency were systematically studied. The results show that the extraction rate of RE at 1200 °C is about 20% higher than that at 1100 °C. The enhanced extraction efficiency at 1200 °C results from the fact that the liquid Fe and Fe2B are not co-soluble with Cu. Reducing the mass ratio of Cu to waste and the size of the waste scraps is also beneficial to enhancing the separation of RE and Fe elements. In addition, the extraction time should be well controlled, for example, less than 2 h at 1100 °C, in order to avoid the increased Fe content in the extracted product. Based on optimized process, the RE elements can be almost fully extracted from the waste. This work thus provides an effective method to recover the RE elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号