首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
基于多直线特征的电子图象稳定算法   总被引:3,自引:0,他引:3       下载免费PDF全文
提出了一种基于多直线特征的全局运动估计算法,同时也介绍了它在电子图象稳定(EIS)系统中的应用,首先,用全局运动估计技术来估计摄像机的运动,即通过小波变换法提取图象中的边缘,并利用Hough变换法提取图象中的直线段特征,然后按照直线段的特征参数和位置选择原则选择具有分布特性的多个直线段,并通过对应的直线段特征比较计算局部运动参数和全局运动参数;最后根据全局运动估计结果,利用滤波法进行抖动判别和补偿,实现对图象序列的稳定处理,实验结果表明,多直线特征可以准确且稳定地估计摄像机的运动参数,通过滤波法可以消除视频序列的抖动。  相似文献   

2.
目的 由于非均匀光照条件下,物体表面通常出现块状的强反射区域,传统的去高光方法在还原图像时容易造成颜色失真或者边缘的丢失。针对这些缺点,提出一种改进的基于双边滤波的去高光方法。方法 首先通过双色反射模型变换得到镜面反射分量与最大漫反射色度之间的转换关系,然后利用阈值将图像的像素点分为两类,将仅含漫反射分量的像素点与含有镜面反射分量的像素点分离开来,对两类像素点的最大漫反射色度分别做估计,接着以估计的最大漫反射色度的相似度作为双边滤波器的值域,同时以图像的最大色度图作为双边滤波的引导图保边去噪,进而达到去除镜面反射分量的目的。结果 以经典的高光图像作为处理对象,对含有镜面反射和仅含漫反射的像素点分别做最大漫反射色度估计,再以该估计图作为双边滤波的引导图,不仅能去除镜面反射分量还能有效的保留图像的边缘信息,最大程度的还原图像细节颜色,并且解决了原始算法处理结果中R、G、B三通道相似的像素点所出现的颜色退化问题。用改进的双边滤波去高光算法对50幅含高光的图像做处理,并将该算法与Yang方法和Shen方法分别作对比,结果图的峰值信噪比(PSNR)也分别平均提高4.17%和8.40%,所提算法的处理效果更符合人眼视觉,图像质量更好。结论 实验结果表明针对含镜面反射的图像,本文方法能够更有效去除图像的多区域局部高光,完成对图像的复原,可为室内外光照不匀情况下所采集图像的复原提供有效理论基础。  相似文献   

3.
Many high‐level image processing tasks require an estimate of the positions, directions and relative intensities of the light sources that illuminated the depicted scene. In image‐based rendering, augmented reality and computer vision, such tasks include matching image contents based on illumination, inserting rendered synthetic objects into a natural image, intrinsic images, shape from shading and image relighting. Yet, accurate and robust illumination estimation, particularly from a single image, is a highly ill‐posed problem. In this paper, we present a new method to estimate the illumination in a single image as a combination of achromatic lights with their 3D directions and relative intensities. In contrast to previous methods, we base our azimuth angle estimation on curve fitting and recursive refinement of the number of light sources. Similarly, we present a novel surface normal approximation using an osculating arc for the estimation of zenith angles. By means of a new data set of ground‐truth data and images, we demonstrate that our approach produces more robust and accurate results, and show its versatility through novel applications such as image compositing and analysis.  相似文献   

4.
3D human pose estimation in motion is a hot research direction in the field of computer vision. However, the performance of the algorithm is affected by the complexity of 3D spatial information, self-occlusion of human body, mapping uncertainty and other problems. In this paper, we propose a 3D human joint localization method based on multi-stage regression depth network and 2D to 3D point mapping algorithm. First of all, we use a single RGB image as the input, through the introduction of heatmap and multi-stage regression to constantly optimize the coordinates of human joint points. Then we input the 2D joint points into the mapping network for calculation, and get the coordinates of 3D human body joint points, and then to complete the 3D human body pose estimation task. The MPJPE of the algorithm in Human3.6 M dataset is 40.7. The evaluation of dataset shows that our method has obvious advantages.  相似文献   

5.
In this paper, we present a number of enhancements to the Kadir/Brady salient region detector which result in a significant improvement in performance. The modifications we make include: stabilising the difference between consecutive scales when calculating the inter-scale saliency, a new sampling strategy using overlap of pixels, partial volume estimation and parzen windowing. Repeatability is used as the criterion for evaluating the performance of the algorithm. We observe the repeatability for distinctive regions selected from an image and from the same image after applying a particular transformation. The transformations we use include planar rotation, pixel translation, spatial scaling, and intensity shifts and scaling. Experimental results show that the average repeatability rate is improved from 46% to approximately 78% when all the enhancements are applied. We also compare our algorithm with other region detectors on a set of sequences of real images, and our detector outperforms most of the state of the art detectors.  相似文献   

6.
Discrete tomography focuses on the reconstruction of images that contain only a few grey levels from their projections. By incorporating prior knowledge about the set of grey levels, the required number of projections can be reduced substantially. In practical applications, however, the number of grey levels is often known in advance, yet the actual grey level values are unknown. Moreover, it can be difficult to estimate these grey levels, particularly if only a small number of projections are available. In this paper, we propose a semi-automatic approach for grey level estimation that can be used as a preprocessing step before applying discrete tomography algorithms. After an initial, non-discrete reconstruction has been computed, the user first selects some regions that are likely to correspond with the respective grey levels. The fact that these regions should be constant in the original image is then used as prior knowledge in the grey level estimation algorithm. We present the results of a series of simulation experiments, demonstrating the accuracy and robustness of our approach.  相似文献   

7.
We present a new approach to shape-based segmentation and tracking of deformable anatomical structures in medical images, and validate this approach by detecting and tracking the endocardial contour in an echocardiographic image sequence. To this end, some global prior shape knowledge of the endocardial boundary is captured by a prototype template with a set of predefined global and local deformations to take into account its inherent natural variability over time. In this deformable model-based Bayesian segmentation, the data likelihood model relies on an accurate statistical modelling of the grey level distribution of each class present in the ultrasound image. The parameters of this distribution mixture are given by a preliminary iterative estimation step. This estimation scheme relies on a Markov Random Field prior model, and takes into account the imaging process as well as the distribution shape of each class present in the image. Then the detection and the tracking problem is stated in a Bayesian framework, where it ends up as a cost function minimisation problem for each image of the sequence. In our application, this energy optimisation problem is efficiently solved by a genetic algorithm combined with a steepest ascent procedure. This technique has been successfully applied on synthetic images, and on a real echocardiographic image sequence.  相似文献   

8.
In this paper, we present a technique for estimating three-dimensional (3-D) human body posture from a set of sequential stereo images. We estimated the pixel displacements of stereo image pairs to reconstruct 3-D information. We modeled the human body with a set of ellipsoids connected by kinematic chains and parameterized with rotational angles at each body joint. To estimate human posture from the 3-D data, we developed a new algorithm based on expectation maximization (EM) with two-step iterations, assigning the 3-D data to different body parts and refining the kinematic parameters to fit the 3-D model to the data. The algorithm is iterated until it converges on the correct posture. Experimental results with synthetic and real data demonstrate that our method is capable of reconstructing 3-D human posture from stereo images. Our method is robust and generic; any useful information for locating the body parts can be integrated into our framework to improve the outcomes.  相似文献   

9.
This paper concerns color image restoration aiming at objective quality improvement of compressed color images in general rather than merely artifact reduction. In compressed color images, colors are usually represented by luminance and chrominance components. Considering characteristics of human vision system, chrominance components are generally represented more coarsely than luminance component. To recover such chrominance components, we previously proposed a model-based chrominance restoration algorithm where color images are modeled by a Markov random field. This paper presents a color image restoration algorithm derived by the MAP estimation, where all components are totally estimated. Experimental results show that the proposed restoration algorithm is more effective than the previous one.  相似文献   

10.
运动参数估计在图像配准,电子稳像以及图像拼接中起着很重要的作用,其中块匹配算法是经常使用的一种方法。当平移较大的时候,块匹配算法仍然存在不足,因此本文提出了一种新的算法。首先利用灰度投影法得到相邻两幅图像的平移量,在此基础上再利用块匹配算法进行分块处理。实验说明了此方法的有效性,能够满足一般要求。  相似文献   

11.
目的 光场相机通过一次成像同时记录场景的空间信息和角度信息,获取多视角图像和重聚焦图像,在深度估计中具有独特优势。遮挡是光场深度估计中的难点问题之一,现有方法没有考虑遮挡或仅仅考虑单一遮挡情况,对于多遮挡场景点,方法失效。针对遮挡问题,在多视角立体匹配框架下,提出了一种对遮挡鲁棒的光场深度估计算法。方法 首先利用数字重聚焦算法获取重聚焦图像,定义场景的遮挡类型,并构造相关性成本量。然后根据最小成本原则自适应选择最佳成本量,并求解局部深度图。最后利用马尔可夫随机场结合成本量和平滑约束,通过图割算法和加权中值滤波获取全局优化深度图,提升深度估计精度。结果 实验在HCI合成数据集和Stanford Lytro Illum实际场景数据集上展开,分别进行局部深度估计与全局深度估计实验。实验结果表明,相比其他先进方法,本文方法对遮挡场景效果更好,均方误差平均降低约26.8%。结论 本文方法能够有效处理不同遮挡情况,更好地保持深度图边缘信息,深度估计结果更准确,且时效性更好。此外,本文方法适用场景是朗伯平面场景,对于含有高光的非朗伯平面场景存在一定缺陷。  相似文献   

12.
人体姿态估计是指从图像中检测人体各部分的位置并计算其方向和尺度信息,姿态估计的结果分二维和三维两种情况,而估计的方法分基于模型和无模型两种途径。本文首先介绍了人体姿态估计的研究背景和应用方向,然后对姿态估计的相关概念作了阐述,分析了姿态估计的输出表示,接着从人体目标检测和姿态估计两大类进行了详细分析和讨论,从实际应用的角度对各种方法做了理论上的比较和分析。最后,对相关研究还存在的问题和进一步研究的趋势作了归纳和总结。  相似文献   

13.
Place recognition is a core competency for any visual simultaneous localization and mapping system. Identifying previously visited places enables the creation of globally accurate maps, robust relocalization, and multi-user mapping. To match one place to another, most state-of-the-art approaches must decide a priori what constitutes a place, often in terms of how many consecutive views should overlap, or how many consecutive images should be considered together. Unfortunately, such threshold dependencies limit their generality to different types of scenes. In this paper, we present a placeless place recognition algorithm using a novel match-density estimation technique that avoids heuristically discretizing the space. Instead, our approach considers place recognition as a problem of continuous matching between image streams, automatically discovering regions of high match density that represent overlapping trajectory segments. The algorithm uses well-studied statistical tests to identify the relevant matching regions which are subsequently passed to an absolute pose algorithm to recover the geometric alignment. We demonstrate the efficiency and accuracy of our methodology on three outdoor sequences, including a comprehensive evaluation against ground-truth from publicly available datasets that shows our approach outperforms several state-of-the-art algorithms for place recognition. Furthermore we compare our overall algorithm to the currently best performing system for global localization and show how we outperform the approach on challenging indoor and outdoor datasets.  相似文献   

14.
目的 图像在获取和传输的过程中很容易受到噪声的干扰,图像降噪作为众多图像处理系统的预处理模块在过去数十年中得到了广泛的研究。在已提出的降噪算法中,往往采用加性高斯白噪声模型AWGN(additive white Gaussian noise)为噪声建模,噪声水平(严重程度)由方差参数控制。经典的BM3D 3维滤波算法属于非盲降噪(non-blind denoising algorithm)算法,在实际使用中需要由人工评估图像噪声水平并设置参数,存在着噪声评估值随机性大而导致无法获得最佳降噪效果的问题。为此,提出了一种新的局部均值噪声估计(LME)算法并作为BM3D算法的前置预处理模块。方法 本文专注于利用基于自然统计规律(NSS)的图像质量感知特征和局部均值估计技术构建图像噪声水平预测器,并通过它高效地获得噪声图像中准确的噪声水平值。关于自然场景统计方面的研究表明,无失真的自然场景图像在空域或者频率域上具有显著的统计规律,一旦受到噪声干扰会产生规律性的偏移,可以提取这些特征值作为反映图像质量好坏的图像质量感知特征。另外,局部均值估计因其简单而高效率的预测特性被采用。具体实现上,在具有广泛代表性且未受噪声干扰图像集合上添加不同噪声水平的高斯噪声构建失真图像集合,然后利用小波变换对这些失真图像进行不同尺度和不同方向的分解,再用广义高斯分布模型(GGD)提取子带滤波系数的统计信息构成描述图像失真程度的特征矢量,最后用每幅失真图像上所提取的特征矢量及对其所施加的高斯噪声水平值构成了失真特征矢量库。在降噪阶段,用相同的特征提取方法提取待降噪的图像的特征矢量并在失真特征矢量库中检索出与之类似的若干特征矢量及它们所对应的噪声水平值,然后用局部均值法估计出待降噪图像中高斯噪声大小作为经典BM3D算法的输入参数。结果 改进后的BM3D算法转换为盲降噪算法,称为BM3D-LME(block-matching and 3D filtering based on local means estimation)算法。准确的噪声估计对于诸如图像降噪,图像超分辨率和图像分割等图像处理任务非常重要。已经验证了所提出噪声水平估计算法的准确性、鲁棒性和有效性。结论 相对人工进行噪声估计,LME算法能够准确、快速地估算出任意待降噪图像中的噪声大小。配合BM3D算法使用后,有效提高了它的实际降噪效果并扩大它的应用范围。  相似文献   

15.
针对传统单幅图像深度估计线索不足及深度估计精度不准的问题,提出一种基于非参数化采样的单幅图像深度估计方法。该方法利用非参数化的学习手段,将现有RGBD数据集中的深度信息迁移到输入图像中去。首先计算输入图像和现有RGBD数据集多尺度的高层次图像特征;然后,在现有RGBD数据集中,基于高层次的图像特征通过kNN最近邻搜索找到若干与输入图像特征最匹配的候选图像,并将这些候选图像对通过SIFT流形变到输入图像进行对齐。最后,对候选深度图进行插值和平滑等优化操作便可以得到最后的深度图。实验结果表明,与现有算法相比,该方法估计得到的深度图精度更高,对输入图像的整体结构保持得更好。  相似文献   

16.
In this paper, we present a method for human full-body pose estimation from depth data that can be obtained using Time of Flight (ToF) cameras or the Kinect device. Our approach consists of robustly detecting anatomical landmarks in the 3D data and fitting a skeleton body model using constrained inverse kinematics. Instead of relying on appearance-based features for interest point detection that can vary strongly with illumination and pose changes, we build upon a graph-based representation of the depth data that allows us to measure geodesic distances between body parts. As these distances do not change with body movement, we are able to localize anatomical landmarks independent of pose. For differentiation of body parts that occlude each other, we employ motion information, obtained from the optical flow between subsequent intensity images. We provide a qualitative and quantitative evaluation of our pose tracking method on ToF and Kinect sequences containing movements of varying complexity.  相似文献   

17.
We present a Bayesian approach to the machine vision processes of shape-from-shading and photometric stereo, also considering the associated question of the detection of shape discontinuities. The shape reconstruction problem is formulated as a maximum a posteriori (MAP) estimation from probability distributions of Gibbs form, and is solved via simulated annealing. In shape-from-shading, our formulation leads to a constrained optimization problem, where the constraints come from the image irradiance equation and from the incorporation of the necessary boundary conditions. In photometric stereo, we are able to estimate shape directly from degraded input images. We also propose an edge-detection algorithm that works cooperatively with the reconstruction process, employing the shape estimates to locate the discontinuities of the reconstructed surface. We show results of the application of our framework both to synthetic and to real imagery.  相似文献   

18.
19.
目的 双目视觉是目标距离估计问题的一个很好的解决方案。现有的双目目标距离估计方法存在估计精度较低或数据准备较繁琐的问题,为此需要一个可以兼顾精度和数据准备便利性的双目目标距离估计算法。方法 提出一个基于R-CNN(region convolutional neural network)结构的网络,该网络可以实现同时进行目标检测与目标距离估计。双目图像输入网络后,通过主干网络提取特征,通过双目候选框提取网络以同时得到左右图像中相同目标的包围框,将成对的目标框内的局部特征输入目标视差估计分支以估计目标的距离。为了同时得到左右图像中相同目标的包围框,使用双目候选框提取网络代替原有的候选框提取网络,并提出了双目包围框分支以同时进行双目包围框的回归;为了提升视差估计的精度,借鉴双目视差图估计网络的结构,提出了一个基于组相关和3维卷积的视差估计分支。结果 在KITTI(Karlsruhe Institute of Technology and Toyota Technological Institute)数据集上进行验证实验,与同类算法比较,本文算法平均相对误差值约为3.2%,远小于基于双目视差图估计算法(11.3%),与基于3维目标检测的算法接近(约为3.9%)。另外,提出的视差估计分支改进对精度有明显的提升效果,平均相对误差值从5.1%下降到3.2%。通过在另外采集并标注的行人监控数据集上进行类似实验,实验结果平均相对误差值约为4.6%,表明本文方法可以有效应用于监控场景。结论 提出的双目目标距离估计网络结合了目标检测与双目视差估计的优势,具有较高的精度。该网络可以有效运用于车载相机及监控场景,并有希望运用于其他安装有双目相机的场景。  相似文献   

20.
Human segmentation in photo images is a challenging and important problem that finds numerous applications ranging from album making and photo classification to image retrieval. Previous works on human segmentation usually demand a time-consuming training phase for complex shape-matching processes. In this paper, we propose a straightforward framework to automatically recover human bodies from color photos. Employing a coarse-to-fine strategy, we first detect a coarse torso (CT) using the multicue CT detection algorithm and then extract the accurate region of the upper body. Then, an iterative multiple oblique histogram algorithm is presented to accurately recover the lower body based on human kinematics. The performance of our algorithm is evaluated on our own data set (contains 197 images with human body region ground truth data), VOC 2006, and the 2010 data set. Experimental results demonstrate the merits of the proposed method in segmenting a person with various poses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号