共查询到4条相似文献,搜索用时 0 毫秒
1.
A novel cascade ensemble classifier system with a high recognition performance on handwritten digits
This paper presents a novel cascade ensemble classifier system for the recognition of handwritten digits. This new system aims at attaining a very high recognition rate and a very high reliability at the same time, in other words, achieving an excellent recognition performance of handwritten digits. The trade-offs among recognition, error, and rejection rates of the new recognition system are analyzed. Three solutions are proposed: (i) extracting more discriminative features to attain a high recognition rate, (ii) using ensemble classifiers to suppress the error rate and (iii) employing a novel cascade system to enhance the recognition rate and to reduce the rejection rate. Based on these strategies, seven sets of discriminative features and three sets of random hybrid features are extracted and used in the different layers of the cascade recognition system. The novel gating networks (GNs) are used to congregate the confidence values of three parallel artificial neural networks (ANNs) classifiers. The weights of the GNs are trained by the genetic algorithms (GAs) to achieve the overall optimal performance. Experiments conducted on the MNIST handwritten numeral database are shown with encouraging results: a high reliability of 99.96% with minimal rejection, or a 99.59% correct recognition rate without rejection in the last cascade layer. 相似文献
2.
A novel approach to characterise the model prediction errors using a Gaussian mixture model is proposed. The motivation for this work lies behind many data models that are developed through prediction error minimisation with the assumption of a normal noise distribution. When the noise is non-normal, which may often be the case in complicated data modelling scenarios, the model prediction errors may contain rich information, which can be further exploited for model refinement and improvement. The key contents presented in this paper include: choosing the relevant variables to form the error data, optimising the number of Gaussian components required for the error data modelling, and fitting the Gaussian mixture parameters using an expectation-maximisation algorithm. Application of the proposed method for further model improvement, within the framework of hybrid deterministic/stochastic modelling, is also discussed. Preliminary results on the real industrial Charpy impact energy data for heat-treated steels show its effectiveness for model error characterisation, and the potential for model performance improvement in terms of prediction accuracy as well as providing accurate prediction confidence intervals. 相似文献
3.
In this work, a novel application of bio-inspired computational heuristic paradigm is presented for micropolar fluid flow and heat transfer system in a channel with permeable walls by modeling competency of neural networks, global search of genetic algorithms, and rapid local convergence of sequential quadratic programming. Approximation theory in the mean squared error sense is exploited for the formulation of an objective function to solve the governing nonlinear fluidics system. The designed scheme is employed to study the dynamics of the model in terms of stream function, microrotation, concentration, and temperature profiles for prominent factors based on Reynolds number, Peclet number for diffusion of heat and mass, coupling, spin-gradient viscosity, micro inertia density parameters. The consistency and robustness of the solver are validated through statistical performance indices based on comparison with state of art Adams numerical method for accuracy and complexity measures. 相似文献
4.
The 21st century is seeing technological advances that make it possible to build more robust and sophisticated decision support systems than ever before. But the effectiveness of these systems may be limited if we do not consider more eclectic (or romantic) options. This paper exemplifies the potential that lies in the novel application and combination of methods, in this case to evaluating stock market purchasing opportunities using the “technical analysis” school of stock market prediction. Members of the technical analysis school predict market prices and movements based on the dynamics of market price and volume, rather than on economic fundamentals such as earnings and market share. The results of this paper support the effectiveness of the technical analysis approach through use of the “bull flag” price and volume pattern heuristic. The romantic approach to decision support exemplified in this paper is made possible by the recent development of: (1) high-performance desktop computing, (2) the methods and techniques of machine learning and soft computing, including neural networks and genetic algorithms, and (3) approaches recently developed that combine diverse classification and forecasting systems. The contribution of this paper lies in the novel application and combination of the decision-making methods and in the nature and superior quality of the results achieved. 相似文献