首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
串行流化床生物质气化制氢试验研究   总被引:2,自引:0,他引:2  
基于串行流化床生物质气化技术,以水蒸气为气化剂,在串行流化床试验装置上进行生物质气化制氢的试验研究,考察了气化反应器温度、水蒸气/生物质比率(S/B)对气化气成分、烟气成分和氢产率的影响。结果表明:在燃烧反应器内燃烧烟气不会串混至气化反应器,该气化技术能够稳定连续地从气化反应器获得不含N_2的富氢燃气,氢浓度最高可达71.5%;气化反应器温度是影响制氢过程的重要因素,随着温度的升高,气化气中H_2浓度不断降低,CO浓度显著上升,氢产率有所提高;S/B对气化气成分影响较小,随着S/B的增加,氢产率先升高而后降低,S/B的最优值为1.4。最高氢产率(60.3g H_2/kg biomass)是在气化反应器温度为920℃,S/B为1.4的条件下获得的。  相似文献   

2.
串行流化床生物质气化制取富氢气体模拟研究   总被引:8,自引:1,他引:7  
利用串行流化床技术将生物质热解气化和燃烧过程分开,气化反应器和燃烧反应器之间通过灰渣进行热量传递,实现了自供热下生物质气化制氢.利用Aapen Plus软件模拟制氢过程,通过比较单反应器生物质气化的模拟结果和实验结果,验证了模拟研究的可行性.重点研究串行流化床中非催化气化与CaCO3作用下的气化过程,探讨了气化温度、蒸汽与生物质的质量配比(S/B)对制氢的影响,为今后开展生物质气化制氢试验提供了理论参考.结果表明:对应不同气化温度,S/B都存在一个最佳值,且随着温度升高其值减小.当气化温度低于750℃时,添加CaCO3可大幅提高氢产率,气化温度为700℃且在S/B约为0.9时氢产率最大,达43.7 mol·(kg生物质)-1(干燥无灰基),比同温度下非催化气化提高了20.3%.随着气化温度升高,CaCO3促进作用减弱.  相似文献   

3.
烟秆裂解实验研究   总被引:1,自引:0,他引:1  
系统地研究了以烟秆为原料裂解制备生物质焦油的工艺参数,以及原料粒径、裂解温度、添加剂用量对裂解产物组成的影响。结果表明,当裂解温度在550℃左右,原料粒径为0.425~1.000 mm,添加剂凹凸棒土用量为烟秆的100%时,生物质焦油产率最高,为47.9%,而残焦及气体得率分别为17.6%和34.5%。烟秆裂解得到的生物质焦油,其成分复杂。分离提纯生物质焦油中的较大组分尼古丁,可用于医药、食品和饲料、日用化工、染料及电镀等行业,应用前景相当广泛,烟秆裂解具有巨大的开发利用潜力。  相似文献   

4.
对安徽区域内的生物质调研取样并进行工业分析、元素分析和气化特性分析。利用模型对不同生物质气化过程进行模拟计算,得到生物质含水率M_(ad)、气化温度T和气化剂当量比ER对生物质气组分、低位发热量、气化热效率和气化产率的影响。对秸秆类生物质,在气化条件为:M_(ad)0.1,ER=0.24~0.30,T=600℃~750℃下,可获得综合指标较好的生物质气,如当涂水稻秸秆在M_(ad)=0.05,ER=0.25,T=690℃条件下,获得生物质气的综合指标最佳。对水稻、小麦秸秆等生物质气化炉设计和运行具有指导意义。  相似文献   

5.
生物质烘焙预处理对气流床气化的影响   总被引:4,自引:0,他引:4  
为考查生物质在烘焙预处理过程中的能量产率和颗粒研磨变化规律及对气流床气化总体效率的影响情况,在一套小型烘焙试验台上,对4种不同种类的生物质进行烘焙试验,并对固体产物研磨后进行粒径分析.最后通过小型生物质气流床进行气化试验.结果表明:生物质的能量密度随着烘焙温度的提高而升高,其中,中温烘焙(~250℃)能获得较好的固体和能量产率,减少能量损失;烘焙温度是烘焙过程中最重要的影响因素;烘焙可减少生物质研磨时的电耗,使其易磨;气流床气化试验中,烘焙生物质能够改善煤气成分,提高气化的总体效率.总之,在生物质气流床气化过程中,烘焙预处理能为生物质的粒径减小和随后的大规模利用提供了-个良好的解决途径.  相似文献   

6.
生物质气流床气化制取合成气的试验研究   总被引:3,自引:0,他引:3  
利用一套小型生物质层流气流床气化系统,研究了稻壳、红松、水曲柳和樟木松4种生物质在不同反应温度、氧气/生物质比率(O/B)、水蒸汽/生物质比率(S/B)以及停留时间下对合成气成分、碳转化率、H2/CO以及CO/CO2比率的影响.研究表明4种生物质在常压气流床气化生成合成气最佳O/B范围为0.2~0.3(气化温度.1300℃),高温气化时合成气中CH4含量很低,停留时间为1.6s时其气化反应基本完毕.加大水蒸汽含量可增加H2/CO比率,在S/B为0.8时H2/CO比率都在1以上,但水蒸汽的过多引入会影响煤气产率.气化温度是生物质气流床气化最重要的影响因素之一.  相似文献   

7.
纤维素废弃物稀酸水解残渣制氢研究   总被引:1,自引:0,他引:1  
李文志  颜涌捷  任铮伟  黄秒 《太阳能学报》2007,28(11):1248-1252
对纤维素废弃物水解残渣催化气化制氢进行了研究,考察了气化温度、催化温度、催化剂颗粒粒径和S/B (单位时间内进入气化器中水蒸汽质量与生物质质量之比)4个主要参数对气体组成和氢气产率的影响并和以木屑为原料催化气化制氢进行了比较。在试验范围内提高气化温度、催化温度和S/B的值以及减小催化剂颗粒粒径对提高氢产率有利,其中气化温度和S/B对提高氢产率影响较大。气化温度在800~850℃内较为理想,催化剂颗粒的适宜粒径为2~3mm,S/B取1.5~2.0较佳;和木屑制氢相比,使用水解残渣制取的气体中CO和CO_2的体积百分比小,H_2/CO的值大,氢气含量高,有利于后续处理,且氢产率大,对制氢有利。  相似文献   

8.
生物质气化制氢的模拟   总被引:1,自引:0,他引:1  
以秸秆为研究对象,利用Aspen P lus软件建立气化反应器模型,对生物质气化制氢进行模拟计算.探讨不同反应条件,包括气化温度、生物质与蒸汽质量配比以及催化剂对富氢气体成分的影响.计算结果表明,未加催化剂条件下,采用生物质蒸汽气化技术可获得体积分数为6000/以上的富氢燃料气,增大蒸汽与生物质质量配比有利于氢气产率的提高;添加CaO、MgO催化剂可较大幅度地提高氢气产率,氢气体积分数最大可达到9400/,其中CaO对生物质气化制氢过程的催化作用非常显著.  相似文献   

9.
生物质富氧——水蒸气气化制氢特性研究   总被引:7,自引:0,他引:7  
以一个鼓泡流化床为反应器,对生物质富氧—水蒸气气化制取富氢燃气的特性进行了一系列的实验研究。通过对试验数据的分析,探讨了主要参数温度、水蒸气/生物质(S/B)和氧浓度对气体成分、氢产率和潜在产氢量的影响。结果表明:在3个主要参数的变化范围内,氢产率和潜在氢产量受温度的影响最大:当温度从700~900℃时,每千克生物质氢产量从18g增加到了53g,每千克生物质潜在氢产量从71.6g增加到了115.6g。  相似文献   

10.
俞海淼  陈庚  马通  陈德珍 《太阳能学报》2019,40(5):1351-1358
以松木木屑和水稻秸秆作为生物质原料,在自制小型气流床气化炉上开展CO_2/空气混合气化焦油析出特性实验研究,考察CO_2/C比、温度和生物质种类对焦油产率、组分和露点温度的影响。结果表明,相比于纯空气气化,CO_2/空气混合气化能降低焦油产率,促使焦油组分发生改变,特别是杂环化合物和重多环芳烃组分。随着CO_2/C比升高,松木和秸秆的焦油露点温度总体先升高后下降。不同种类的生物质添加相应量的CO_2能有效控制焦油析出,改善产气品质。  相似文献   

11.
基于ASPEN PLUS模拟生物质与煤气流床共气化工艺   总被引:1,自引:0,他引:1  
基于ASPEN PLUS软件模拟平台,对生物质与煤气流床共气化过程进行模拟,考察操作条件及生物质与煤配比变化对气化性能的影响。模拟计算结果表明:与生物质单独气化相比,生物质与煤共气化能提高气化温度及气化效率;与煤单独气化相比,生物质可部分替代煤且不会明显改变气化效果,尽管气化温度略有下降,但混合物灰熔点的降低能很好弥补这一变化。生物质质量分数为20%,[O]/[C]摩尔比在1.1~1.3时气化效果最佳,气化温度约为1250℃,有效气产率1.92Nm~3/kg,煤气热值可达到11.5MJ/Nm~3,冷煤气效率79.7%。  相似文献   

12.
以中药渣为原料进行水蒸气气化实验,研究气化温度、水蒸气与生物质质量之比(S/B)对产气流量、气体产率、产气组分、碳转化率、燃气热值以及气化效率的影响。研究结果表明:气化温度的升高能够促进气化反应的进行,提高产气品质和气化效率;一定量的气化剂水蒸气可提高气化效率,但是过量的水蒸气会影响气化效果;气化温度为800℃,S/B为1.0时,气化效果最佳,气化效率高达72.91%;中药渣具备良好的水蒸气气化特性。研究结果可为中药渣资源利用提供理论参考。  相似文献   

13.
采用单一流化床二步气化方法,以纯水蒸气为气化剂,在流化床中进行制取氢气的工艺试验。在对试验数据进行分析的基础上,探讨了一些主要参数[如反应器温度、水蒸气/生物质(S/B)、生物质化学成分]对氢产率的影响。分析结果表明:较高的反应温度、S/B以及纤维素和半纤维素含量比较有利于氢的产出。验证试验表明:在反应温度为1000~1050℃,S/B为2.0的条件下,纤维素和半纤维素含量为74.1%的木屑(干基)的氢产率最高,为61.67g/kg。  相似文献   

14.
在固定床实验台上,对甘油与生物质共水蒸气气化进行实验研究。采用正交实验方法,设计三因素三水平正交试验,考察温度、水流量、甘油/生物质(质量比)这3个因素对玉米芯与甘油混合物共气化制取的气体产物成分组成、气体产率、液体产率、固体产率及气体产物热值的影响。在此基础上对实验数据进行极差分析和方差分析计算,确定所考察因素的显著性、主次地位和各因素水平的优化组合。实验结果表明:影响H_2产率的因素主次顺序为T(温度)S(水流量)G/B(甘油/生物质质量比),优化组合参数为T=750℃,S=2 mL/min,G/B=3:8。气体产物中H_2体积分数为35.8%~62.0%。  相似文献   

15.
为充分回收高温炉渣颗粒的余热,设计了回转窑热解反应装置。为验证此装置的可行性,对生物质气化制氢进行了试验研究,并对影响气化性能的主要因素,如气化温度(650~950℃)和水蒸气/生物质当量比S/B(0~3.0)进行了研究。结果表明:温度是影响生物质气化反应的主要因素,高温可以降低焦油和焦炭产率,提高气体产量,增加燃气中氢气含量;水蒸气的加入,有利于焦油和低分子碳氢化合物的气化重整以及焦炭的反应,降低焦油产量,提高气体产量,增加燃气中氢气含量,但是过量的水蒸气会导致反应器内温度下降,不利于反应进行。当S/B为2.20时,气化燃气中氢气含量达到最大值53.6%。  相似文献   

16.
生物质流化床燃烧/气化的烧结特性与机理综述   总被引:1,自引:0,他引:1  
流化床燃烧/气化是生物质高效规模化能源利用的主要方式之一,由于生物质在较低温度下燃烧/气化时就容易发生床料烧结,影响了系统安全稳定运行,阻碍了能源利用效率的提高.系统地归纳了不同生物质在不同种类床料状态下燃烧/气化时烧结所需的特征温度,分析了生物质种类、碱金属含量、反应气氛与烧结温度之间的联系,结合相关研究,对生物质的烧结机理进行了分析和总结,对烧结温度预测方法和模型的优缺点进行了剖析和比较,对生物质燃烧/气化烧结机理进一步研究、预测模型的优化等提出了积极的建议,以期为相关研究的深入开展和生物质能规模化利用水平的提高提供有意义的参考.  相似文献   

17.
上吸式生物质秸秆气化炉的设计与试验研究   总被引:1,自引:0,他引:1  
杨少鹏  薛勇  牛广路 《节能》2009,28(9):6-9
设计一台上吸式生物质秸秆气化炉,并进行热解气化试验,分析不同气化剂量对炉内温度的影响以及温度和秸秆种类对产气成分的影响。试验结果表明:气化剂量对炉内温度及炉内温度对产气成分含量的影响均较大;秸秆种类也对产气的热值有较大的影响,稻草热解可燃气热值4.1MJ/m^3,油菜秆热解可燃气热值4.9MJ/m^3,玉米秆热解可燃气热值5.5MJ/m^3。  相似文献   

18.
生物质气化影响因素分析   总被引:8,自引:1,他引:8  
阐述了生物质定义、特点及生物质气化原理,综述了生物质在流化床气化中,气化剂、原料粒径、温度、压力、原料前处理等操作条件对生物质气化产品组成的影响,讨论了煤与生物质共气化的协同作用,指出了生物质流化床气化的技术关键。  相似文献   

19.
对生物质气流床气化过程进行了小型台架实验研究,建立生物质气流床气化小型实验台架,进行生物质快速热解和水蒸气气化的实验,实验表明:温度提高有利于提高产品气的产率、气化过程的碳转化率和气化效率,但温度过高会促进CH_4的重整反应、水气变化反应、降低CO、甲烷含量,从而影响产品气热值。粒径对气化结果有着一定影响,粒径对气化结果的影响主要体现在固相内部升温速率和最终温度上,粒径越小,颗粒升温越快,能达到的最终温度越高。水蒸气气化过程中,适当的水蒸气的通入能大量提高产气中的H_2、CO的占比,提高碳转化率和H_2/CO的比值,碳转化率在S/B比为1.4时达到最大值96%,此时气化效率也高达94%,水蒸气的通入过量会导致炉内温度下降,各项评价指标均开始下降,降低燃气品质。  相似文献   

20.
在自行设计的固定床气化炉实验台上开展序批式进料模式的生物质(白松木屑)高温气化实验研究,重点考察反应温度、水蒸气流率以及物料粒径等不同工况条件对生物质气化产气特性的影响,实验结果表明,在800~950℃的范围内,每千克白松木屑的氢产率为21.91~71.63g H2。不同水蒸气流率下H2平均浓度变化不大,CO平均浓度随水蒸气流率的增加略有增大,气体平均热值在11.87~12.04kJ/m3内变化。实验条件下水蒸气流率为20.2g/min时的氢气产率最大。随着生物质给料粒径的减小,气体产率和气化效率均减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号