首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ergonomics》2012,55(5):660-675
Individual digit-tip forces and moments during torque production on a mechanically fixed circular object were studied. During the experiments, subjects positioned each digit on a 6-dimensional force/moment sensor attached to a circular handle and produced a maximum voluntary torque on the handle. The torque direction and the orientation of the torque axis were varied. From this study, it is concluded that: (1) the maximum torque in the closing (clockwise) direction was larger than in the opening (counter clockwise) direction; (2) the thumb and little finger had the largest and the smallest share of both total normal force and total moment, respectively; (3) the sharing of total moment between individual digits was not affected by the orientation of the torque axis or by the torque direction, while the sharing of total normal force between the individual digit varied with torque direction; (4) the normal force safety margins were largest and smallest in the thumb and little finger, respectively.  相似文献   

2.
OBJECTIVE: The effects of handle friction and torque direction on muscle activity and torque are empirically investigated using cylindrical handles. BACKGROUND: A torque biomechanical model that considers contact force, friction, and torque direction was evaluated using different friction handles. METHODS: Twelve adults exerted hand torque in opposite directions about the long axis of a cylinder covered with aluminum or rubber while grip force, torque, and finger flexor electromyography (EMG) were recorded. In addition, participants performed grip exertions without torque, in which they matched the EMG level obtained during previous maximum torque exertions, to allow us to determine how grip force was affected by the absence of torque. RESULTS: (a) Maximum torque was 52% greater for the high-friction rubber handle than for the low-friction aluminum handle. (b) Total normal force increased 33% with inward torque (torque applied in the direction fingertips point) and decreased 14% with outward torque (torque in the direction the thumb points), compared with that with no torque. Consequently, maximum inward torque was 45% greater than maximum outward torque. (c) The effect of torque direction was greater for the high-friction rubber handle than for the low-friction aluminum handle. CONCLUSION: The results support the proposed model, which predicts a large effect of torque direction when high-friction handles are gripped. APPLICATION: Designing tasks with high friction and inward rotations can increase the torque capability of workers of a given strength, or reduce required muscle activities for given torque exertions, thus reducing the risk of fatigue and musculoskeletal disorders.  相似文献   

3.
Kong YK  Lowe BD  Lee SJ  Krieg EF 《Ergonomics》2007,50(9):1404-1418
The purpose of this study was to evaluate the effects of screwdriver handle shape, surface material and workpiece orientation on torque performance, finger force distribution and muscle activity in a maximum screwdriving torque task. Twelve male subjects performed maximum screw-tightening exertions using screwdriver handles with three longitudinal shapes (circular, hexagonal and triangular), four lateral shapes (cylindrical, double frustum, cone and reversed double frustum) and two surfaces (rubber and plastic). The average finger force contributions to the total hand force were 28.1%, 39.3%, 26.5% and 6.2%, in order from index to little fingers; the average phalangeal segment force contributions were 47.3%, 14.0%, 20.5% and 18.1% for distal, middle, proximal and metacarpal phalanges, respectively. The plastic surface handles were associated with 15% less torque output (4.86 Nm) than the rubber coated handles (5.73 Nm). In general, the vertical workpiece orientation was associated with higher torque output (5.9 Nm) than the horizontal orientation (4.69 Nm). Analysis of handle shapes indicates that screwdrivers designed with a circular or hexagonal cross-sectional shape result in greater torque outputs (5.49 Nm, 5.57 Nm), with less total finger force (95 N, 105 N). In terms of lateral shape, reversed double frustum handles were associated with less torque output (5.23 Nm) than the double frustum (5.44 Nm) and cone (5.37 Nm) handles. Screwdriver handles designed with combinations of circular or hexagonal cross-sectional shapes with double frustum and cone lateral shapes were optimal in this study.  相似文献   

4.
Li ZM 《Ergonomics》2002,45(6):425-440
The current study investigated inter-digit co-ordination and object-digit interaction during sustained object holding tasks by using five, six-component force/torque sensors. The sum of the individual finger normal forces and the thumb normal force showed a parallel variation with a mean median correlation coefficient of 0.941. The normal force traces demonstrated the lowest coefficient of variation (about 9% as averaged across digits) as compared with other force/torque traces. The sum for the variances of the normal forces of the index, middle, ring, and little fingers was about 50% of the variance of the summed normal force of the four fingers. Of the five digits, the thumb, index, middle, ring and little fingers accounted for 50.0, 15.4, 14.6, 11.7 and 7.3% of the total normal force; and 39.4, 9.9, 19.3, 14.0 and 17.5% of the total vertical shear force (i.e. the load), respectively. The ratios of the normal force to the resultant shear force were 2.6, 4.5, 1.8, 2.2 and 1.3 for the thumb, index, middle, ring and little finger, respectively. The centre of pressure migration area of a single digit at the object-digit surface during object holding ranged from 0.30 to 1.21 mm(2). The current study reveals a number of detailed object-digit mechanics and multiple digits co-ordination principle. The results of this study may help to improve ergonomic designs that involve the usage of multiple digits.  相似文献   

5.
《Ergonomics》2012,55(6):425-440
The current study investigated inter-digit co-ordination and object-digit interaction during sustained object holding tasks by using five, six-component force/torque sensors. The sum of the individual finger normal forces and the thumb normal force showed a parallel variation with a mean median correlation coefficient of 0.941. The normal force traces demonstrated the lowest coefficient of variation (about 9% as averaged across digits) as compared with other force/torque traces. The sum for the variances of the normal forces of the index, middle, ring, and little fingers was about 50% of the variance of the summed normal force of the four fingers. Of the five digits, the thumb, index, middle, ring and little fingers accounted for 50.0, 15.4, 14.6, 11.7 and 7.3% of the total normal force; and 39.4, 9.9, 19.3, 14.0 and 17.5% of the total vertical shear force (i.e. the load), respectively. The ratios of the normal force to the resultant shear force were 2.6, 4.5, 1.8, 2.2 and 1.3 for the thumb, index, middle, ring and little finger, respectively. The centre of pressure migration area of a single digit at the object-digit surface during object holding ranged from 0.30 to 1.21 mm2. The current study reveals a number of detailed object-digit mechanics and multiple digits co-ordination principle. The results of this study may help to improve ergonomic designs that involve the usage of multiple digits.  相似文献   

6.
《Ergonomics》2012,55(9):1404-1418
The purpose of this study was to evaluate the effects of screwdriver handle shape, surface material and workpiece orientation on torque performance, finger force distribution and muscle activity in a maximum screwdriving torque task. Twelve male subjects performed maximum screw-tightening exertions using screwdriver handles with three longitudinal shapes (circular, hexagonal and triangular), four lateral shapes (cylindrical, double frustum, cone and reversed double frustum) and two surfaces (rubber and plastic). The average finger force contributions to the total hand force were 28.1%, 39.3%, 26.5% and 6.2%, in order from index to little fingers; the average phalangeal segment force contributions were 47.3%, 14.0%, 20.5% and 18.1% for distal, middle, proximal and metacarpal phalanges, respectively. The plastic surface handles were associated with 15% less torque output (4.86 Nm) than the rubber coated handles (5.73 Nm). In general, the vertical workpiece orientation was associated with higher torque output (5.9 Nm) than the horizontal orientation (4.69 Nm). Analysis of handle shapes indicates that screwdrivers designed with a circular or hexagonal cross-sectional shape result in greater torque outputs (5.49 Nm, 5.57 Nm), with less total finger force (95 N, 105 N). In terms of lateral shape, reversed double frustum handles were associated with less torque output (5.23 Nm) than the double frustum (5.44 Nm) and cone (5.37 Nm) handles. Screwdriver handles designed with combinations of circular or hexagonal cross-sectional shapes with double frustum and cone lateral shapes were optimal in this study.  相似文献   

7.
Seo NJ  Armstrong TJ 《Ergonomics》2011,54(10):961-970
A generic torque model for various handle shapes has been developed and evaluated using experimental data. Twelve subjects performed maximum isometric torques using circular and elliptic cylinders in medium and large sizes (circular: r = 25.4, 38.1 mm; elliptic: semi-major/minor axes = 30.9/19.3, 47.1/27.8 mm) finished with aluminium and rubber, in two opposite directions. Torque, grip force distribution, and finger position were recorded. Maximum torques were 25%, 7%, and 31% greater for the elliptic, large-size, and rubber-finished cylinders than for the circular, medium-size, and aluminium-finished cylinders, respectively. Greater torque for the elliptic cylinders was associated with 58% greater normal force that the subjects could generate for the elliptic than circular cylinders. The model suggests that greater torques for the large-size and rubber cylinders are related to long moment arms and greater frictional coupling at the hand-cylinder interface, respectively. Subjects positioned their hands differently depending on torque direction to maximise their normal force and torque generation. STATEMENT OF RELEVANCE: Desirable handle features for torque generation may be different from those for grip only. Design of handles per advantageous handle features (e.g., shape, size, and surface) may help increase people's torque strength and contribute to increased physical capacity of people.  相似文献   

8.
《Ergonomics》2012,55(9):1163-1176
Individual finger position and external grip forces were investigated while subjects held cylindrical objects from above using circular precision grips. Healthy females (n = 11) and males (n = 15) lifted cylindrical objects of various weights (05, 10 and 20kg), and varied diameters (50, 7-5 and 100cm) using the 5-finger grip mode. The effects of 4-, 3- and 2-finger grip modes in the circular grip were also investigated.

Individual finger position was nearly constant for all weights and for diameters of 5-0 and 7-5 cm. The mean angular positions for the index, middle, ring and little fingers relative to the thumb were 98°, 145°, 181°, and 236°, respectively. At the 10-cm diameter, the index and middle finger positions increased, while the ring and little finger positions decreased. There were no differences in individual finger position with regard to gender, hand dimension, or hand strength.

Total grip force increased with weight, and at diameters greater or lesser than 7-5 cm. Total grip force also increased as the number of fingers used for grasping decreased. Although the contribution of the individual fingers to the total grip force changed with weight and diameter, the thumb contribution always exceeded 38% followed by the ring and little fingers, which contributed approximately 18-23% for all weights and diameters. The contribution of the index finger was always smallest (>11%). There was no gender difference for any of the grip force variables. The effects of hand dimension and hand strength on the individual finger grip forces were subtle.  相似文献   

9.
Irwin CB  Radwin RG 《Ergonomics》2008,51(2):156-167
This study examines using force vectors measured using a directional strain gauge grip dynamometer for estimating finger flexor tendon tension. Fifty-three right-handed participants (25 males and 28 females) grasped varying-sized instrumented cylinders (2.54, 3.81, 5.08, 6.35 and 7.62 cm diameter) using a maximal voluntary power grip. The grip force vector magnitude and direction, referenced to the third metacarpal, was resolved by taking two orthogonal grip force measurements. A simple biomechanical model incorporating the flexor tendons was used to estimate long finger tendon tension during power grip. The flexor digitorum superficialis and the flexor digitorum profundus were assumed to create a moment about the metacarpal phalange (MCP) joint that equals and counteracts a moment around the MCP joint measured externally by the dynamometer. The model revealed that tendon tension increased by 130% from the smallest size handle to the largest, even though grip force magnitude decreased 36% for the same handles. The study demonstrates that grip force vectors may be useful for estimating internal hand forces.  相似文献   

10.
《Ergonomics》2012,55(2):156-167
This study examines using force vectors measured using a directional strain gauge grip dynamometer for estimating finger flexor tendon tension. Fifty-three right-handed participants (25 males and 28 females) grasped varying-sized instrumented cylinders (2.54, 3.81, 5.08, 6.35 and 7.62 cm diameter) using a maximal voluntary power grip. The grip force vector magnitude and direction, referenced to the third metacarpal, was resolved by taking two orthogonal grip force measurements. A simple biomechanical model incorporating the flexor tendons was used to estimate long finger tendon tension during power grip. The flexor digitorum superficialis and the flexor digitorum profundus were assumed to create a moment about the metacarpal phalange (MCP) joint that equals and counteracts a moment around the MCP joint measured externally by the dynamometer. The model revealed that tendon tension increased by 130% from the smallest size handle to the largest, even though grip force magnitude decreased 36% for the same handles. The study demonstrates that grip force vectors may be useful for estimating internal hand forces.  相似文献   

11.
IEA Newsletter     
《Ergonomics》2012,55(5):601-605
Five grip spans (45 to 65 mm) were tested to evaluate the effects of handle grip span and user's hand size on maximum grip strength, individual finger force and subjective ratings of comfort using a computerised digital dynamometer with independent finger force sensors. Forty-six males participated and were assigned into three hand size groups (small, medium, large) according to their hands' length. In general, results showed the 55- and 50-mm grip spans were rated as the most comfortable sizes and showed the largest grip strength (433.6 N and 430.8 N, respectively), whereas the 65-mm grip span handle was rated as the least comfortable size and the least grip strength. With regard to the interaction effect of grip span and hand size, small and medium-hand participants rated the best preference for the 50- to 55-mm grip spans and the least for the 65-mm grip span, whereas large-hand participants rated the 55- to 60-mm grip spans as the most preferred and the 45-mm grip span as the least preferred. Normalised grip span (NGS) ratios (29% and 27%) are the ratios of user's hand length to handle grip span. The NGS ratios were obtained and applied for suggesting handle grip spans in order to maximise subjective comfort as well as gripping force according to the users' hand sizes. In the analysis of individual finger force, the middle finger force showed the highest contribution (37.5%) to the total finger force, followed by the ring (28.7%), index (20.2%) and little (13.6%) finger. In addition, each finger was observed to have a different optimal grip span for exerting the maximum force, resulting in a bow-contoured shaped handle (the grip span of the handle at the centre is larger than the handle at the end) for two-handle hand tools. Thus, the grip spans for two-handle hand tools may be designed according to the users' hand/finger anthropometrics to maximise subjective ratings and performance based on this study. Results obtained in this study will provide guidelines for hand tool designers and manufacturers for designing grip spans of two-handle tools, which can maximise handle comfort and performance.  相似文献   

12.
This study investigated the effects of screwdriver handle shape, surface, and workpiece orientation on subjective discomfort, number of screw-tightening rotations, screw-insertion time, axial screwdriving force, and finger contact forces in a screwdriving task. Handles with three longitudinal cross-sectional shapes (circular, hexagonal, triangular), four lateral shapes (cylindrical, double frustum, reversed double frustum, cone), and two surface materials (plastic, rubber coated) were tested. Individual phalangeal segment force distributions indicated how fingers and phalangeal segments were involved in the creation of total finger force (15.0%, 34.6%, 34.5%, and 15.9% for the index, middle, ring, and little fingers; and 45.7%, 22.4%, 12.9%, and 19.0% for the distal, middle, proximal, and metacarpal phalanges, respectively). From this finding, the index and little fingers appeared to contribute mainly in the guiding and balancing of the screwdriver handles, whereas middle and ring fingers played a more prominent role in gripping and turning. Participants preferred circular and hexagonal longitudinal-shaped and double frustum and cone lateral-shaped handles over the triangular longitudinal-shaped handles, and cylindrical and reversed double frustum lateral-shaped handles. Circular, cylindrical, and double frustum handles exhibited the least total finger force associated with screw insertion. In terms of combinations of longitudinal and lateral shapes, circular with double frustum handles were associated with less discomfort and total finger force.  相似文献   

13.
A theory on the hierarchical organization of the control of human prehension (grasping and manipulation of a hand-held object) was tested by comparing the performances of neural networks of different designs. The inputs into the networks were external torque, handle width, and thumb location, and the outputs were the individual digit forces. The networks differed only in their architecture: N1 was a classical three-layer network; N2 was a hierarchical two-tier network with single projections, in which the outputs of the first tier were used as inputs for the second tier, that yielded the individual digit forces; and N3 was a hierarchical two-tier network with dual projections, where the inputs to the second tier were the outputs of the first tier—as in N2—plus the inputs into the first tier (external torque, handle width, and thumb location). Each tier of N2 and N3 consisted of one three-layer network. The N3 network showed the best performance, supporting the idea that the control of prehension is hierarchically organized.  相似文献   

14.
《Ergonomics》2012,55(8):876-889
The goal of the study was to examine the force sharing among the fingers during static prehension under systematic loading and postural changes. A custom-built handle was constructed that allowed for bi-directional loading (upward and downward) with different load magnitudes (250, 750 and 1250?g). Five- and three-digit grasps were tested. The fingers were spaced 2, 3 or 6?cm apart. The handle was oriented vertically such that the tangential forces acted parallel to the applied load. There were no differences in tangential sharing patterns between males and females. The factors that did affect the sharing pattern (ranked from the smallest to the largest effect) were: TRIAL (i.e., inter-trial variability), LOAD MAGNITUDE, SUBJECT, HAND POSTURE and LOAD DIRECTION. Normal force sharing accounted for much but not all of the variability in tangential sharing. The results suggest that loading direction should be considered when designing tools that require functional tangential forces for successful task completion (e.g., screwdrivers, jar lids, etc.). A hypothesis to account for the directional changes based on the passive properties of the fingers is proposed.  相似文献   

15.
OBJECTIVE: To investigate the relationship among friction, applied torque, and axial push force on cylindrical handles. BACKGROUND: We have earlier demonstrated that participants can exert greater contact force and torque in an "inward" movement of the hand about the long axis of a gripped cylinder (wrist flexion/forearm supination) than they can in an "outward" hand movement. METHOD: Twelve healthy participants exerted anteriorly directed maximum push forces along the long axis of aluminum and rubber handles while applying deliberate inward or outward torques, no torque (straight), and an unspecified (preferred) torque. RESULTS: Axial push force was 12% greater for the rubber handle than for the aluminum handle. Participants exerted mean torques of 1.1, 0.3, 2.5, and -2.0 Nm and axial push forces of 94, 85, 75, and 65 N for the preferred, straight, inward, and outward trials, respectively. Left to decide for themselves, participants tended to apply inward torques, which were associated with increased axial push forces. CONCLUSION: Axial push force was limited by hand-handle coupling--not the whole body's push strength. Participants appeared to intuitively know that the application of an inward torque would improve their maximum axial push force. Axial push forces were least when a deliberate torque was requested, probably because high levels of torque exertions interfered with the push. APPLICATION: A low-friction handle decreases maximum axial push force. It should be anticipated that people will apply inward torque during maximum axial push.  相似文献   

16.
The goal of the study was to examine the force sharing among the fingers during static prehension under systematic loading and postural changes. A custom-built handle was constructed that allowed for bi-directional loading (upward and downward) with different load magnitudes (250, 750 and 1250 g). Five- and three-digit grasps were tested. The fingers were spaced 2, 3 or 6 cm apart. The handle was oriented vertically such that the tangential forces acted parallel to the applied load. There were no differences in tangential sharing patterns between males and females. The factors that did affect the sharing pattern (ranked from the smallest to the largest effect) were: TRIAL (i.e., inter-trial variability), LOAD MAGNITUDE, SUBJECT, HAND POSTURE and LOAD DIRECTION. Normal force sharing accounted for much but not all of the variability in tangential sharing. The results suggest that loading direction should be considered when designing tools that require functional tangential forces for successful task completion (e.g., screwdrivers, jar lids, etc.). A hypothesis to account for the directional changes based on the passive properties of the fingers is proposed.  相似文献   

17.
《Ergonomics》2012,55(12):1161-1177
The statics and dynamics of pneumatic power screwdriver operation were investigated in the context of predicting forces acting against the human operator. A static force model is described in the paper, based on tool geometry, mass, orientation in space, feed force, torque build up, and stall torque. Three common power hand tool shapes are considered, including pistol grip, right angle, and in-line. The static model estimates handle force needed to support a power nutrunner when it acts against the tightened fastener with a constant torque. A system of equations for static force and moment equilibrium conditions are established, and the resultant handle force (resolved in orthogonal directions) is calculated in matrix form. A dynamic model is formulated to describe pneumatic motor torque build-up characteristics dependent on threaded fastener joint hardness. Six pneumatic tools were tested to validate the deterministic model. The average torque prediction error was 6.6% (SD = 5.4%) and the average handle force prediction error was 6.7% (SD = 6.4%) for a medium-soft threaded fastener joint. The average torque prediction error was 5.2% (SD = 5.3%) and the average handle force prediction error was 3.6% (SD = 3.2%) for a hard threaded fastener joint. Use of these equations for estimating handle forces based on passive mechanical elements representing the human operator is also described. These models together should be useful for considering tool handle force in the selection and design of power screwdrivers, particularly for minimizing handle forces in the prevention of injuries and work related musculoskeletal disorders.  相似文献   

18.
Lin JH  Radwin RG  Fronczak FJ  Richard TG 《Ergonomics》2003,46(12):1161-1177
The statics and dynamics of pneumatic power screwdriver operation were investigated in the context of predicting forces acting against the human operator. A static force model is described in the paper, based on tool geometry, mass, orientation in space, feed force, torque build up, and stall torque. Three common power hand tool shapes are considered, including pistol grip, right angle, and in-line. The static model estimates handle force needed to support a power nutrunner when it acts against the tightened fastener with a constant torque. A system of equations for static force and moment equilibrium conditions are established, and the resultant handle force (resolved in orthogonal directions) is calculated in matrix form. A dynamic model is formulated to describe pneumatic motor torque build-up characteristics dependent on threaded fastener joint hardness. Six pneumatic tools were tested to validate the deterministic model. The average torque prediction error was 6.6% (SD = 5.4%) and the average handle force prediction error was 6.7% (SD = 6.4%) for a medium-soft threaded fastener joint. The average torque prediction error was 5.2% (SD = 5.3%) and the average handle force prediction error was 3.6% (SD = 3.2%) for a hard threaded fastener joint. Use of these equations for estimating handle forces based on passive mechanical elements representing the human operator is also described. These models together should be useful for considering tool handle force in the selection and design of power screwdrivers, particularly for minimizing handle forces in the prevention of injuries and work related musculoskeletal disorders.  相似文献   

19.
The objective of this study was to analyse the effect of the handle diameter on the grip forces exerted by the hand during a maximal power grip task. A handle ergometer, combining six instrumented beams and a pressure map, was used to determine the forces exerted by the palm side of the hand regrouping data from 10 anatomical sites (fingertips, phalanges, thumb, palm…). This methodology provided results giving new insight into the effect of the handle diameter on the forces exerted by the hand. First, it appeared that the relationship between the hand length/handle diameter ratio and the maximal grip force fit a U-inverted curve with maximal values observed for a handle diameter measuring 17.9% of the hand length. Second, it was showed that the handle diameter influenced the forces exerted on the anatomical sites of the hand. Finally, it was showed that the handle diameter influenced the finger force sharing particularly for the index and the little fingers. Practitioner Summary: This study analysed the effect of the handle diameter on the grip forces exerted by the hand during a maximal power grip force. This study showed that measurement of the totality of the forces exerted at the hand/handle interface is needed to better understand the ergonomics of handle tools. Our results could be re-used by designers and clinicians in order to develop handle tools which prevent hand pathologies.  相似文献   

20.
Grip force was measured along two orthogonal axes and vector summed. Sixty-one participants recruited from a manufacturing facility (29 men and 32 women) grasped instrumented cylinders (2.54, 3.81, 5.08, 6.35, and 7.62 cm diameter) using a maximal voluntary power grip. Two orthogonal force measurements relative to the third metacarpal were resolved into a magnitude and corresponding angle. On average, magnitude increased 34.8 N as handle diameter increased from 2.54 cm to 3.81 cm, and then monotonically declined 103.8 N as the handle diameter increased to 7.62 cm. The average direction monotonically decreased from 59.2 degrees to 37.7 degrees as handle diameter decreased from the largest to the smallest. When the diameter was smallest, the greatest force component, Fx (168.6 N), was in the direction where the fingertips opposed the palm. Conversely, when the diameter was largest, the smallest component, Fx (77.7 N), was in the same direction. These values are averaged for the left and right hand. The angle for the largest diameter increased with increasing hand size. These relationships should be useful for the design of handles that require gripping in specific directions, such as for hand tools and controls. Actual or potential applications of this research include the design of handles that require gripping in specific directions, such as for hand tools and controls, that reduce effort, and that prevent fatigue and overexertion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号