首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以醋酸纤维素(CA)和聚偏氟乙烯(PVDF)为膜材料,以N,N-二甲基乙酰胺(DMAc)为溶剂,制备PVDF/CA共混超滤膜,经过表面接枝共聚和偕胺肟化改性,制备PVDF/CA-g-PAO螯合膜,用于去除污水中的重金属离子。采用红外光谱、扫描电镜、紫外分光光度计、光谱分析仪对PVDF/CA-g-PAO螯合膜进行表征,考察螯合膜对Pb~(2+)和Cu~(2+)的吸附性能。结果表明,PVDF/CA-g-PAO螯合膜对Pb~(2+)的去除率达到98%,对Cu~(2+)的去除率仅为20%。在分离性能变化不大的情况下,PVDF/CA-g-PAO螯合膜既能去除水中有机污染物,又能吸附重金属离子。  相似文献   

2.
将两步法非均相反应合成的偕胺肟基细菌纤维素(AOBC)同时用作还原剂和稳定剂在水热条件下直接与氯金酸反应,制备了负载纳米金的偕胺肟基细菌纤维素(AOBC/AuNPs)复合材料。通过红外、紫外、透射电镜、热重分析等手段对复合材料的结构和性能进行了分析和表征,讨论了细菌纤维素在碱液中的活化时间对纳米金制备的影响。结果表明,在活化时间小于8h时,随活化时间延长,负载在纤维素上的纳米金粒子的粒径逐渐变小;在活化时间达8h时,纳米金粒径最小且分布均匀;而当活化时间超过8h时,负载的纳米金粒径又增大。确定纤维素的最佳活化时间为8h。  相似文献   

3.
以两步法非均相反应合成了偕胺肟基杨絮纤维素,并用傅里叶变换红外光谱对其结构进行表征。将合成的纤维素用于吸附废水中的重金属离子,采用重铬酸钾溶液模拟含重金属离子废水,考察了吸附时间、溶液的pH以及重铬酸钾溶液初始质量浓度对改性纤维素吸附效果的影响。结果表明,改性杨絮纤维素在重铬酸钾溶液初始质量浓度为1g/L、pH为2的条件下吸附容量达到70.6 mg/g,对Cr~(6+)的吸附过程符合Langmuir吸附等温式,改性杨絮纤维素对重金属离子的吸附效果良好。  相似文献   

4.
采用静电纺丝法制得CS/PVA纳米纤维膜,并将其作为对铜、镉离子的吸附材料。通过扫描电子显微镜(SEM)观察到CS/PVA纳米纤维细而均匀且呈不规则的网状结构。力学性能测试结果表明CS/PVA纳米纤维膜的稳定性较好,为其广泛应用于金属离子吸附材料提供前提。系统探讨了吸附时间、pH值、金属离子初始浓度对吸附性能的影响。结果表明,CS/PVA纳米纤维膜对Cu~(2+)、Cd~(2+)的吸附作用在2 h内即可快速达到平衡,其吸附容量随着金属离子初始浓度、溶液pH值的增加而增大。此外,在100 mmol/L的稀盐酸(HCl)溶液中,Cu~(2+)、Cd~(2+)的脱附率在1min内可分别达到86.7%和91.3%。  相似文献   

5.
为提高膜对水溶液中铜离子的吸附效果,采用共缩聚法制备了氨基功能化介孔二氧化硅(AFMS)微球,然后将AFMS微球与聚偏氟乙烯(PVDF)以不同质量比共混,通过浸没沉淀相转化法制备了PVDF/AFMS杂化膜.采用SEM、FTIR对膜结构进行表征,并考察PVDF/AFMS杂化膜对水溶液中Cu~(2+)(初始质量浓度为300 mg/L)的吸附效果.结果表明:AFMS成功嵌入PVDF膜中;随着AFMS质量分数、pH(7.0)、Cu~(2+)溶液体积和接触时间的增加,杂化膜对Cu~(2+)的吸附量逐渐增大,直至达到吸附平衡;当AFMS在铸膜液固含量中所占质量分数为40%、pH值为6.0、Cu~(2+)溶液体积为20 mL、接触时间为120 min时,PVDF/AFMS杂化膜对Cu~(2+)的吸附量高达57.3 mg/g;经过5次吸附-脱附实验,该杂化膜对Cu~(2+)的吸附量为54.6 mg/g,为初始吸附量的95%以上.说明该杂化膜具有良好的吸附性能和再生性能,且操作简便.  相似文献   

6.
以聚丙烯腈(PAN)为膜材料,以N,N-二甲基甲酰胺(DMF)为溶剂,采用相转化法制备超滤膜,对膜表面偕胺肟化改性,使其螯合Cu~(2+)和Ag~+制备抗菌超滤膜,以解决金属离子的流失问题。采用红外光谱、扫描电镜、紫外可见分光光度计等测试手段对超滤膜进行表征,考察了螯合Cu~(2+)和Ag~+的超滤膜对大肠杆菌和金色葡萄球菌的抑菌性能。结果表明,Ag~+螯合膜对大肠杆菌和金色葡萄球菌具有抑菌作用,对大肠杆菌的抑菌率为91.3%,对金色葡萄球菌的抑菌率为98.1%,而Cu~(2+)螯合膜几乎没有抑菌效果。在实验范围内,离子螯合膜的分离性能几乎没有受到影响。  相似文献   

7.
为获得对Cu~(2+)具有良好吸附性能的吸附材料,采用戊二醛化学交联氨基硫脲并与竹浆纤维素进行反应,制备纤维素-氨基硫脲吸附材料(Bamboo pulp cellulose-g-thiosemicarbazide, BPC-g-TSC)。利用场发射扫描电子显微镜(FE-SEM)、傅立叶红外吸收光谱(FT-IR)仪和有机元素分析仪对竹浆纤维素和BPC-g-TSC进行表征分析,并研究了不同条件(pH值、接触时间、Cu~(2+)初始浓度等)对Cu~(2+)吸附性能的影响。结果表明:纤维素被氨基硫脲成功修饰;BPC-g-TSC对Cu~(2+)的吸附最佳pH值为7,在吸附4 h后基本达到吸附平衡,平衡吸附量为51.40 mg/g;吸附过程较好地符合准二级动力学模型和朗格缪尔等温吸附模型,说明吸附过程主要是以单层的表面吸附和化学吸附为主,理论最大吸附容量为121.95 mg/g。通过该研究可制备出一种对Cu~(2+)具有良好吸附性能的吸附材料,在废水处理领域具有潜在的应用前景。  相似文献   

8.
为制备出一种绿色环保、重金属离子吸附性能良好的多孔醋酸纤维素(CA)复合纤维膜,选用天然吸附材料蒙脱土(MMT),以CA为基材,通过离心纺丝技术,设计制备MMT/CA多孔复合纤维膜,并将所得纤维膜应用于重金属离子吸附。采用扫描电子显微镜(SEM)、红外光谱仪(FTIR)、X射线光电子能谱仪(EDS)、热重分析仪(TGA)和原子吸收光谱仪(ASS)对复合纤维的形貌结构及吸附性能进行表征。结果表明:在溶剂DCM/DMSO质量配比8∶2时成功制备出具有多孔结构的MMT/CA复合纤维膜;随着MMT质量分数的增加,其Cu~(2+)吸附量也随之增大,当质量分数为3%时最大Cu~(2+)吸附量为44.243 mg/g,并且经过5次解吸循环后,仍保持有80%以上的吸附效果。  相似文献   

9.
以离子液体为溶剂,引入Fe_3O_4纳米颗粒与磺化基团,制备磁性磺化纤维素微球(MSCB)。采用扫描电子显微镜、X射线衍射、热重分析以及傅里叶变换红外光谱等对MSCB的微观结构与化学结构进行了表征,并研究反应时溶液pH、Cu~(2+)初始质量浓度以及吸附时间对Cu~(2+)吸附量的影响。结果表明,当溶液pH为6、Cu~(2+)初始质量浓度为100 mg/L、吸附时间为90 min时,MSCB对Cu~(2+)吸附效果最好,最大吸附量为87.64 mg/g。磺酸基团和球状多孔结构可以提升MSCB的吸附性能。MSCB吸附Cu~(2+)的过程符合准二阶动力学方程与Temkin吸附等温模型。在二次吸附后,重复吸附效率仍保持在84%以上。Fe_3O_4纳米颗粒的加入使MSCB具备敏感的磁响应以及回收利用价值。  相似文献   

10.
改性玉米秸秆对铜离子的吸附性能   总被引:1,自引:0,他引:1  
为提高玉米秸秆吸附重金属的能力,以次磷酸钠为催化剂,通过柠檬酸对秸秆改性制备金属离子吸附剂,并采用红外吸收光谱与扫描电子显微镜对其化学结构和微观结构进行了表征。对比研究玉米秸秆改性前后对Cu~(2+)的吸附性能,考察了pH、初始浓度、吸附温度和吸附时间等因素对Cu~(2+)吸附量的影响。研究结果表明,当Cu~(2+)溶液初始质量浓度为30mg/L、秸秆投加量为1.0g/L、pH为5.5、吸附温度为25℃、吸附时间为30min时,柠檬酸改性玉米秸秆对Cu~(2+)的吸附效果最好,最大平衡吸附量可达26.5mg/g,相比未改性玉米秸秆提高了1.9倍,Cu~(2+)去除率可达89%。吸附动力学研究表明,改性秸秆对Cu~(2+)吸附动力学符合准二级动力学模型。  相似文献   

11.
通过静电纺技术制备了聚丙烯腈共聚物(PAN)纳米纤维,并利用乙二胺对其进行化学改性,研究胺化纳米纤维膜对铜离子的吸附性能.通过傅里叶红外光谱(FTIR)、扫描电子显微镜(SEM)对纳米纤维膜的形态及性能进行了表征,探讨了p H、反应时间、初始浓度等因素对铜离子吸附性能的影响.结果表明:吸附容量分别随p H、反应时间及铜离子初始浓度的增大而增大,当p H达到5,反应时间为3 h,浓度达到100 mg/L时,吸附容量达到平衡.Langmuir与二级动力学模型更符合吸附反应,最大吸附量可达54 mg/g,根据热力学参数分析,此吸附为吸热反应;在进行6次的脱附-吸附后,胺化聚丙烯腈共聚物纳米纤维膜对铜离子仍然具有良好的吸附效果.  相似文献   

12.
采用湿法纺丝制备聚丙烯腈/聚氨酯(PAN/PU)中空纤维膜,通过化学改性制备胺肟化聚丙烯腈/聚氨酯 (AOPAN/PU)中空纤维膜,研究中空纤维膜亲水性变化和金属离子吸附性能。通过扫描电镜,红外光谱对中空纤 维膜进行表征,并测定中空纤维膜亲水性能。研究表明,改性后制备的 AOPAN/PU 中空纤维膜亲水性能得到较 大改善,同时中空纤维膜能高效吸附金属离子,在对 10 mg/L 的 Cu2+、Fe 3+、Zn2+混合金属溶液 3 次吸附循环测 试后发现,滤液中三种剩余金属离子浓度达到生活饮用水卫生标准。  相似文献   

13.
以杨絮纤维素(PF)为基体,以硝酸铈铵为引发剂,引发丙烯腈在纤维素的羟基上自由基聚合而制备杨絮纤维-聚丙烯腈接枝共聚物(PF-g-PAN),用盐酸羟胺将聚丙烯腈中的氰基偕胺肟化,制备了聚偕胺肟功能化杨絮纤维(PF-g-PAO)。分析了PF-g-PAN、PF-g-PAO纤维的形态结构,研究了在不同pH的溶液中PF-g-PAO对重铬酸钾溶液中铬及混合重金属离子的吸附行为和机理。利用偕胺肟基团对银离子的螯合作用,制备了偕胺肟杨絮纤维纳米银复合材料(PF-g-PAO/AgNPs),研究了PF-g-PAO对Ag(Ⅰ)的吸附还原机理及复合材料PF-g-PAO/AgNPs对对硝基苯酚(4-NP)还原反应的催化作用。在4-NP 0.3mmol/L、NaBH4264mmol/L、催化剂0.25mg/mL的催化条件下,PF-g-PAO/AgNPs表现出较好的催化活性,催化还原速率常数为1.87s~(-1)·g~(-1)。  相似文献   

14.
以偕胺肟纤维(AOCF)为吸附材料,与Fe3+反应,制得偕胺肟-铁(Ⅲ)螯合纤维〔AOCF-Fe(Ⅲ)〕,继而用此纤维吸附水溶液活性黄K-6G染料,对其吸附工艺条件和吸附动力学进行了研究。研究结果表明,在温度为40℃、pH=2.0、反应时间为2 h的条件下,吸附效果最佳,饱和吸附量达593 mg/g;该吸附行为是单分子层吸附;吸附反应符合二级反应.  相似文献   

15.
以反相悬浮聚合法制备得到氨基淀粉/凹土/丙烯酸树脂,设计正交实验探讨了凹土与丙烯酸投料比,分散剂、交联剂、引发剂含量及油水比对树脂吸附Cu~(2+)性能的影响效果,优化了制备条件,并通过红外、热失重分析、扫描电镜等分析手段对产物结构及形貌进行了表征。对产物和氨基淀粉吸附Cu~(2+)性能的研究表明,该树脂的吸附平衡时间为45min;溶液pH值为4时,吸附效果最佳;树脂对Pb~(2+)、Cd~(2+)、Cu~(2+)、Ni ~(2+)、Zn~(2+)吸附选择性为Cu~(2+)Pb~(2+)Cd~(2+)Ni ~(2+)Zn~(2+);同等条件下,树脂的吸附性能均优于氨基淀粉的。  相似文献   

16.
为了研究沸石粉对重金属铜的吸附效果,采用室内试验方法,选取天然沸石粉、4A沸石粉以及在天然沸石粉的基础上添加粉煤灰经高温焙烧制成的改性沸石粉作为吸附剂对重金属Cu~(2+)进行静态吸附试验,为了对比验证水泥吸附去除Cu~(2+)的能力,添加了水泥作为吸附剂。通过室内静态吸附试验发现,四者吸附Cu~(2+)能力大小为4A沸石粉≈改性沸石粉天然沸石粉水泥;考虑到制备工艺及经济因素,改性沸石粉是吸附去除Cu~(2+)的最佳选择;改性沸石粉去除Cu~(2+)的最佳掺量为2 g:100 mg/L;p H值在5~8之间沸石粉吸附Cu~(2+)的效果较好。  相似文献   

17.
探讨以稻草为骨架材料制备纤维素,通过改性制得一种离子交换剂的方法及其对重金属离子Cu~(2+)的去除条件和吸附容量。结果显示:制备的这种改性纤维素对Cu~(2+)有很强的吸附能力;在pH≥6时,对Cu~(2+)的吸附容量为10.59mg·g~(-1),用5%的氨水溶液可以洗脱再生。  相似文献   

18.
以偕胺肟纤维为基体纤维,与三氯化钐溶液反应,生成偕胺肟-钐(Ⅲ)配合物纤维,用扫描电子显微镜观察偕胺肟-钐(Ⅲ)配合物纤维的形貌.研究偕胺肟-钐(Ⅲ)配合物纤维的荧光性质,结果显示:在eλx=300 nm激发波长下,偕胺肟-钐(Ⅲ)配合物纤维在475 nm处出现荧光发射峰,且随配合物纤维中钐含量的增加而发生改变.对不同钐含量的配合物纤维样本进行了力学性能测试,并与原纤维(PAN)、偕胺肟纤维进行了比较.找出了荧光强度强、力学性能好的钐含量配合物纤维的最佳工艺条件,为荧光纤维的实际应用提供理论依据.  相似文献   

19.
新型纤维素基螯合纤维的制备与吸附性能   总被引:1,自引:0,他引:1  
为了发展水处理的途径,制备了β-环糊精改性的新型纤维素基螯合纤维.运用原子吸收光谱和紫外光谱考察了其对模拟水样中重金属离子(Cu2+)和有机染料(中性红)的吸附性能.实验结果表明,螯合纤维对Cu2+吸附率达6.24 mg/g,符合Langmuir吸附模型;对中性红也具有较强的包结能力.该鏊合纤维水处理能力强,制备简单,操作简便,有潜在的应用价值.  相似文献   

20.
采用胶体晶模板法制备了三维有序大孔材料,采用表面引发原子转移自由基聚合(SI-ATRP)方法在3DOM CLPS孔壁上可控接枝聚丙烯腈(PAN)链段,继而与盐酸羟胺反应对其进行偕胺肟化,从而制备得到一种新型的偕胺肟基螯合树脂,并对其进行了FT-IR、SEM表征.研究了不同的接枝时间对接枝量的影响,随着时间的延长,接枝量不断增大.并研究了偕胺肟基三维有序大孔螯合树脂(3DOM CLPS-g-PAO)对汞离子的吸附性能,当接枝量为51.89%时,3DOM CLPS-g-PAO对汞离子的最佳吸附量达4.95 mmol/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号