首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
目的 单幅图像超分辨率重建的深度学习算法中,大多数网络都采用了单一尺度的卷积核来提取特征(如3×3的卷积核),往往忽略了不同卷积核尺寸带来的不同大小感受域的问题,而不同大小的感受域会使网络注意到不同程度的特征,因此只采用单一尺度的卷积核会使网络忽略了不同特征图之间的宏观联系。针对上述问题,本文提出了多层次感知残差卷积网络(multi-level perception residual convolutional network,MLP-Net,用于单幅图像超分辨率重建)。方法 通过特征提取模块提取图像低频特征作为输入。输入部分由密集连接的多个多层次感知模块组成,其中多层次感知模块分为浅层多层次特征提取和深层多层次特征提取,以确保网络既能注意到图像的低级特征,又能注意到高级特征,同时也能保证特征之间的宏观联系。结果 实验结果采用客观评价的峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)两个指标,将本文算法其他超分辨率算法进行了对比。最终结果表明本文算法在4个基准测试集上(Set5、Set14、Urban100和BSD100(Berkeley Segmentation Dataset))放大2倍的平均峰值信噪比分别为37.851 1 dB,33.933 8 dB,32.219 1 dB,32.148 9 dB,均高于其他几种算法的结果。结论 本文提出的卷积网络采用多尺度卷积充分提取分层特征中的不同层次特征,同时利用低分辨率图像本身的结构信息完成重建,并取得不错的重建效果。  相似文献   

2.
目的 近几年应用在单幅图像超分辨率重建上的深度学习算法都是使用单种尺度的卷积核提取低分辨率图像的特征信息,这样很容易造成细节信息的遗漏。另外,为了获得更好的图像超分辨率重建效果,网络模型也不断被加深,伴随而来的梯度消失问题会使得训练时间延长,难度加大。针对当前存在的超分辨率重建中的问题,本文结合GoogleNet思想、残差网络思想和密集型卷积网络思想,提出一种多尺度密集残差网络模型。方法 本文使用3种不同尺度卷积核对输入的低分辨率图像进行卷积处理,采集不同卷积核下的底层特征,这样可以较多地提取低分辨率图像中的细节信息,有利于图像恢复。再将采集的特征信息输入残差块中,每个残差块都包含了多个由卷积层和激活层构成的特征提取单元。另外,每个特征提取单元的输出都会通过短路径连接到下一个特征提取单元。短路径连接可以有效地缓解梯度消失现象,加强特征传播,促进特征再利用。接下来,融合3种卷积核提取的特征信息,经过降维处理后与3×3像素的卷积核提取的特征信息相加形成全局残差学习。最后经过重建层,得到清晰的高分辨率图像。整个训练过程中,一幅输入的低分辨率图像对应着一幅高分辨率图像标签,这种端到端的学习方法使得训练更加迅速。结果 本文使用两个客观评价标准PSNR(peak signal-to-noise ratio)和SSIM(structural similarity index)对实验的效果图进行测试,并与其他主流的方法进行对比。最终的结果显示,本文算法在Set5等多个测试数据集中的表现相比于插值法和SRCNN算法,在放大3倍时效果提升约3.4 dB和1.1 dB,在放大4倍时提升约3.5 dB和1.4 dB。结论 实验数据以及效果图证明本文算法能够较好地恢复低分辨率图像的边缘和纹理信息。  相似文献   

3.
目的 现有医学图像超分辨率方法主要针对单一模态图像进行设计,然而在磁共振成像(magnetic resonance imaging, MRI)技术的诸多应用场合,往往需要采集不同成像参数下的多模态图像。针对单一模态的方法无法利用不同模态图像之间的关联信息,很大程度上限制了重建性能。目前超分辨率网络模型参数量往往较大,导致计算和存储代价较高。为此,本文提出了一个轻量级残差密集注意力网络,以一个统一的网络模型同时实现多模态MR图像的超分辨率重建。方法 首先将不同模态的MR图像堆叠后输入网络,在低分辨率空间中提取共有特征,之后采用设计的残差密集注意力模块进一步精炼特征,再通过一个亚像素卷积层上采样到高分辨率空间,最终分别重建出不同模态的高分辨率图像。结果 本文采用MICCAI (medical image computing and computer assisted intervention) BraTS (brain tumor segmentation) 2019数据集中的T1和T2加权MR图像对网络进行训练和测试,并与8种代表性超分辨率方法进行对比。实验结果表明,本文方法可以取得优于...  相似文献   

4.
针对多数单帧图像超分辨率(single image super-resolution,SISR)重建方法存在的特征信息发掘不充分、特征图各通道之间的相互依赖关系难以确定以及重建高分辨率(high resolution,HR)图像时存在重构误差等问题,提出了基于深度残差反投影注意力网络的图像超分辨率(SR)算法。即利用残差学习的思想缓解训练难度和充分发掘图像的特征信息,并使用反投影学习机制学习高低分辨图像之间的相互依赖关系,此外引入了注意力机制动态分配各特征图以不同的注意力资源从而发掘更多的高频信息和学习特征图各通道之间的依赖关系。实验结果表明了所提方法相比于多数单帧图像超分辨率方法,不仅在客观指标方面得到了显著的提升,而且重建的预测图像也具有更加丰富的纹理信息。  相似文献   

5.
针对目前提高图像分辨率的卷积神经网络存在的特征提取尺度单一以及梯度消失等问题,提出了多尺度残差网络的单幅图像超分辨率重建方法。采用多尺度特征提取和特征信息融合,解决了对图像细节特征提取不够充分的问题;将局部残差学习和全局残差学习相结合,提高了卷积神经网络信息流传播的效率,减轻了梯度消失现象。在Set5、Set14和BSD100等常用测试集上进行了实验,该方法的实验结果均优于其他5种方法,相比于SRCNN方法,平均PSNR提升了0.74 dB,平均SSIM提升了0.014 3 dB;相比于VDSR方法,平均PSNR提升了0.12 dB,平均SSIM提升了0.002 5 dB。  相似文献   

6.
数字图像在传递信息中起着重要的作用,图像超分辨率技术能丰富图像的细节信息.针对许多网络对低分辨率图像的有效特征复用不足和参数量过大的问题,本文结合不同大小的卷积核以及注意力残差机制构建图像超分辨率网络,用3个有差别尺度的卷积层来提取图像的特征,其中第2和第3层用小卷积核替代大的卷积核,对3层卷积融合之后引入注意力机制,...  相似文献   

7.
目的 现有的去雨方法存在去雨不彻底和去雨后图像结构信息丢失等问题。针对这些问题,提出多尺度渐进式残差网络(multi scale progressive residual network, MSPRNet)的单幅图像去雨方法。方法 提出的多尺度渐进式残差网络通过3个不同感受野的子网络进行逐步去雨。将有雨图像通过具有较大感受野的初步去雨子网络去除图像中的大尺度雨痕。通过残留雨痕去除子网络进一步去除残留的雨痕。将中间去雨结果输入图像恢复子网络,通过这种渐进式网络逐步恢复去雨过程中损失的图像结构信息。为了充分利用残差网络的残差分支上包含的重要信息,提出了一种改进残差网络模块,并在每个子网络中引入注意力机制来指导改进残差网络模块去雨。结果 在5个数据集上与最新的8种方法进行对比实验,相较于其他方法中性能第1的模型,本文算法在5个数据集上分别获得了0.018、0.028、0.012、0.007和0.07的结构相似度(structural similarity, SSIM)增益。同时在Rain100L数据集上进行了消融实验,实验结果表明,每个子网络的缺失都会造成去雨性能的下降,提出的多尺度渐进式网...  相似文献   

8.
针对现有残差网络存在残差特征利用不充分、细节丢失的问题,提出一种结合两层残差聚合结构和感受野扩展双注意力机制的深度神经网络模型,用于单幅图像超分辨率(SISR)重建。该模型通过跳跃连接形成两层嵌套的残差聚合网络结构,对网络各层提取的大量残差信息进行分层聚集和融合,能减少包含图像细节的残差信息的丢失。同时,设计一种多尺度感受野扩展模块,能捕获更大范围、不同尺度的上下文相关信息,促进深层残差特征的有效提取;并引入空间-通道双注意力机制,增强残差网络的判别性学习能力,提高重建图像质量。在数据集Set5、Set14、BSD100和Urban100上进行重建实验,并从客观指标和主观视觉效果上将所提模型与主流模型进行比较。客观评价结果表明,所提模型在全部4个测试数据集上均优于对比模型,其中,相较于经典的超分辨率卷积神经网络(SRCNN)模型和性能次优的对比模型ISRN(Iterative Super-Resolution Network),在放大2倍、3倍、4倍时的平均峰值信噪比(PSNR)分别提升1.91、1.71、1.61 dB和0.06、0.04、0.04 dB;视觉效果对比显示,所提模型恢...  相似文献   

9.
深度卷积神经网络在单图像超分辨率重建方面取得了卓越成就,但其良好表现通常以巨大的参数数量为代价.本文提出一种简洁紧凑型递归残差网络结构,该网络通过局部残差学习减轻训练深层网络的困难,引入递归结构保证增加深度的同时控制模型参数数量,采用可调梯度裁剪方法防止产生梯度消失/梯度爆炸,使用反卷积层在网络末端直接上采样图像到超分辨率输出图像.基准测试表明,本文在重建出同等质量超分辨率图像的前提下,参数数量及计算复杂度分别仅为VDSR方法的1/10和1/(2n2).  相似文献   

10.
近年来,随着科学技术的高速发展,深度学习的蓬勃兴起,实现图像超分辨率重建成为计算机视觉领域一大热门研究课题.然而网络深度增加容易引起训练困难,并且网络无法获取准确的高频信息,导致图像重建效果差.本文提出基于密集残差注意力网络的图像超分辨率算法来解决这些问题.该算法主要采用密集残差网络,在加快模型收敛速度的同时,减轻了梯度消失问题.注意力机制的加入,使网络高频有效信息较大的权重,减少模型计算成本.实验证明,基于密集残差注意力网络的图像超分辨率算法在模型收敛速度上极大地提升,图像细节恢复效果令人满意.  相似文献   

11.
目的 通道注意力机制在图像超分辨率中已经得到了广泛应用,但是当前多数算法只能在通道层面选择感兴趣的特征图而忽略了空间层面的信息,使得特征图中局部空间层面上的信息不能合理利用。针对此问题,提出了区域级通道注意力下的图像超分辨率算法。方法 设计了非局部残差密集网络作为网络的主体结构,包括非局部模块和残差密集注意力模块。非局部模块提取非局部相似信息并传到后续网络中,残差密集注意力模块在残差密集块结构的基础上添加了区域级通道注意力机制,可以给不同空间区域上的通道分配不同的注意力,使空间上的信息也能得到充分利用。同时针对当前普遍使用的L1和L2损失函数容易造成生成结果平滑的问题,提出了高频关注损失,该损失函数提高了图像高频细节位置上损失的权重,从而在后期微调过程中使网络更好地关注到图像的高频细节部分。结果 在4个标准测试集Set5、Set14、BSD100(Berkeley segmentation dataset)和Urban100上进行4倍放大实验,相比较于插值方法和SRCNN(image super-resolution using deep convolutional networks)算法,本文方法的PSNR(peak signal to noise ratio)均值分别提升约3.15 dB和1.58 dB。结论 区域级通道注意力下的图像超分辨率算法通过使用区域级通道注意力机制自适应调整网络对不同空间区域上通道的关注程度,同时结合高频关注损失加强对图像高频细节部分的关注程度,使生成的高分辨率图像具有更好的视觉效果。  相似文献   

12.
目的 基于深度学习的图像超分辨率重构研究取得了重大进展,如何在更好提升重构性能的同时,有效降低重构模型的复杂度,以满足低成本及实时应用的需要,是该领域研究关注的重要问题。为此,提出了一种基于通道注意力(channel attention,CA)嵌入的Transformer图像超分辨率深度重构方法(image super-resolution with channelattention-embedded Transformer,CAET)。方法 提出将通道注意力自适应地嵌入Transformer变换特征及卷积运算特征,不仅可充分利用卷积运算与Transformer变换在图像特征提取的各自优势,而且将对应特征进行自适应增强与融合,有效改进网络的学习能力及超分辨率性能。结果 基于5个开源测试数据集,与6种代表性方法进行了实验比较,结果显示本文方法在不同放大倍数情形下均有最佳表现。具体在4倍放大因子时,比较先进的SwinIR (image restoration using swin Transformer)方法,峰值信噪比指标在Urban100数据集上得到了0.09 dB的提升,在Manga109数据集提升了0.30 dB,具有主观视觉质量的明显改善。结论 提出的通道注意力嵌入的Transformer图像超分辨率方法,通过融合卷积特征与Transformer特征,并自适应嵌入通道注意力特征增强,可以在较好地平衡网络模型轻量化同时,得到图像超分辨率性能的有效提升,在多个公共实验数据集的测试结果验证了本文方法的有效性。  相似文献   

13.
目前, 深度卷积神经网络(Convolutional neural network, CNN)已主导了单图像超分辨率(Single image super-resolution, SISR)技术的研究, 并取得了很大进展. 但是, SISR仍是一个开放性问题, 重建的超分辨率(Super-resolution, SR)图像往往会出现模糊、纹理细节丢失和失真等问题. 提出一个新的逐像素对比损失, 在一个局部区域中, 使SR图像的像素尽可能靠近对应的原高分辨率(High-resolution, HR)图像的像素, 并远离局部区域中的其他像素, 可改进SR图像的保真度和视觉质量. 提出一个组合对比损失的渐进残差特征融合网络(Progressive residual feature fusion network, PRFFN). 主要贡献有: 1)提出一个通用的基于对比学习的逐像素损失函数, 能够改进SR图像的保真度和视觉质量; 2)提出一个轻量的多尺度残差通道注意力块(Multi-scale residual channel attention block, MRCAB), 可以更好地提取和利用多尺度特征信息; 3)提出一个空间注意力融合块(Spatial attention fuse block, SAFB), 可以更好地利用邻近空间特征的相关性. 实验结果表明, PRFFN显著优于其他代表性方法.  相似文献   

14.
目的 现有的基于深度学习的单帧图像超分辨率重建算法大多采用均方误差损失作为目标优化函数,以期获得较高的图像评价指标,然而重建出的图像高频信息丢失严重、纹理边缘模糊,难以满足主观视觉感受的需求。同时,现有的深度模型往往通过加深网络的方式来获得更好的重建效果,导致梯度消失问题的产生,训练难度增加。为了解决上述问题,本文提出融合感知损失的超分辨率重建算法,通过构建以生成对抗网络为主体框架的残差网络模型,提高了对低分率图像的特征重构能力,高度还原图像缺失的高频语义信息。方法 本文算法模型包含生成器子网络和判别器子网络两个模块。生成器模块主要由包含稠密残差块的特征金字塔构成,每个稠密残差块的卷积层滤波器大小均为3×3。通过递进式提取图像不同尺度的高频特征完成生成器模块的重建任务。判别器模块通过在多层前馈神经网络中引入微步幅卷积和全局平均池化,有效地学习到生成器重建图像的数据分布规律,进而判断生成图像的真实性,并将判别结果反馈给生成器。最后,算法对融合了感知损失的目标函数进行优化,完成网络参数的更新。结果 本文利用峰值信噪比(PSNR)和结构相似度(SSIM)两个指标作为客观评价标准,在Set5和Set14数据集上测得4倍重建后的峰值信噪比分别为31.72 dB和28.34 dB,结构相似度分别为0.892 4和0.785 6,与其他方法相比提升明显。结论 结合感知损失的生成式对抗超分辨率重建算法准确恢复了图像的纹理细节,能够重建出视觉上舒适的高分辨率图像。  相似文献   

15.
图像分类的深度卷积神经网络模型综述   总被引:3,自引:0,他引:3       下载免费PDF全文
图像分类是计算机视觉中的一项重要任务,传统的图像分类方法具有一定的局限性。随着人工智能技术的发展,深度学习技术越来越成熟,利用深度卷积神经网络对图像进行分类成为研究热点,图像分类的深度卷积神经网络结构越来越多样,其性能远远好于传统的图像分类方法。本文立足于图像分类的深度卷积神经网络模型结构,根据模型发展和模型优化的历程,将深度卷积神经网络分为经典深度卷积神经网络模型、注意力机制深度卷积神经网络模型、轻量级深度卷积神经网络模型和神经网络架构搜索模型等4类,并对各类深度卷积神经网络模型结构的构造方法和特点进行了全面综述,对各类分类模型的性能进行了对比与分析。虽然深度卷积神经网络模型的结构设计越来越精妙,模型优化的方法越来越强大,图像分类准确率在不断刷新的同时,模型的参数量也在逐渐降低,训练和推理速度不断加快。然而深度卷积神经网络模型仍有一定的局限性,本文给出了存在的问题和未来可能的研究方向,即深度卷积神经网络模型主要以有监督学习方式进行图像分类,受到数据集质量和规模的限制,无监督式学习和半监督学习方式的深度卷积神经网络模型将是未来的重点研究方向之一;深度卷积神经网络模型的速度和资源消耗仍不尽人意,应用于移动式设备具有一定的挑战性;模型的优化方法以及衡量模型优劣的度量方法有待深入研究;人工设计深度卷积神经网络结构耗时耗力,神经架构搜索方法将是未来深度卷积神经网络模型设计的发展方向。  相似文献   

16.
针对多种放大倍数的人脸超分辨率重建问题,提出一种基于极深卷积神经网络的人脸超分辨率重建方法,并通过实验发现增加网络深度能够有效提升人脸重建的精度。首先,设计一个包含20个卷积层的网络从低分辨率图片和高分辨率图片之间学习一种端到端的映射关系,并通过在网络结构中将多个小的滤波器进行多次串联以扩大提取纹理信息的范围。其次,引入了残差学习的方法来解决随着深度的提升细节信息丢失的问题。另外,将不同放大因子的低分辨率人脸图片融合到一个训练集中训练,使得该卷积网络能够解决不同放大因子的人脸超分辨率重建问题。在CASPEAL测试集上的结果显示,该极深卷积神经网络的方法比基于双三次插值的人脸重建方法在峰值信噪比(PSNR)和结构相似度上有2.7 dB和2%的提升,和SRCNN的方法比较也有较大的提升,在精度和视觉改善方面都有较大提升。这显示了更深的网络结构能够在重建中取得更好的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号