共查询到19条相似文献,搜索用时 119 毫秒
1.
在数字化的时代里, 越来越多人偏爱在电商平台购物, 随着农产品电商平台的发展, 消费者面对众多选择时难以找到适合自己的产品. 为了提高用户满意度和购买意愿, 农产品电商平台需要根据用户的兴趣偏好向其推荐合适的农产品. 考虑到季节、地域、用户兴趣和农产品属性等多种农业特征, 通过特征交互可以更好地捕捉用户需求. 传统的点击通过率CTR (click through rate)预测模型只关注用户评分, 以简单的方式计算特征交互, 而忽略了特征交互的重要性. 本文提出了一种名为细粒度特征交互选择网络FgFisNet (fine-grained feature interaction selection networks)的新模型. 该模型通过引入细粒度交互层和特征交互选择层, 组合内积和哈达玛积有效地学习特征交互, 然后在训练过程中自动识别重要的特征交互, 并删除冗余的特征交互, 最后将重要的特征交互和一阶特征输入到深度神经网络, 得到最终的CTR预测值. 在农产品电商真实数据集上进行广泛的实验, FgFisNet方法取得了显著的经济效益. 相似文献
2.
为了捕捉在线购物时用户与商品之间的动态交互关系,提高推荐系统(RS)的准确度,提出了结合用户倾向性和商品吸引力的用户评价预测方法。首先,将评论分为用户评论文本和商品评论文本,分别输入两个交互卷积神经网络(CNN),并结合注意力机制,动态捕捉文本中的语义信息和上下文信息,得到用户和商品的自适应特征;然后,利用交互注意力网络,分析商品特征和用户特征的动态交互关系,计算出用户对特定商品的倾向性和商品对特定用户的吸引力;最后,通过预测模块提供用户对商品的准确评价预测。在数据集上进行实验,结果表明,所提方法取得了最优性能,比其他方法的MAE和RMSE性能分别至少提升了15.1%和13.6%。此外,基于Top-K的统计指标进一步验证了所提方法的商品推荐精准度。 相似文献
3.
传统的推荐系统中,基于矩阵分解的协同过滤方法只考虑单一的评分信息,而且作为浅层模型无法学习到更深层次的特征信息。提出一种基于深度学习的多交互混合推荐模型,通过深度学习模型融合更多的辅助信息作为输入,能够缓解数据的稀疏性问题;利用多层交互的非线性网络结构去学习更抽象、稠密的深层次特征表示;通过对用户和项目的隐表示进行多次内积交互获得不同层次的特征表示结果;聚合所有的交互结果进行预测。在Movieles latest 100K数据集上进行实验,采用[RMSE]指标进行评估,结果表明所提模型在推荐效果上有所提升。 相似文献
4.
传统的低阶特征模型不能充分利用大数据,从多个维度描述数据和用户.专注于高阶特征提取,结合显式和隐式特征交互的点击率预估模型可以利用好大数据的特点.使用Tensorflow框架搭建包含深度神经网络、因子压缩交互网络和多重特征自交互网络结构的模型,使用淘宝展示广告点击率预估数据集进行训练.模型采用对数损失值和ROC曲线下面积作为评价指标,与原始的LR、FM、Deep&Wide等典型模型进行比较,对数损失值降低了0.04,AUC值提高了0.05左右. 相似文献
5.
潜在因子模型(LFM)以其优异的性能在推荐领域得到了广泛应用。在LFM中除了使用交互数据以外,辅助信息也被引入用于解决数据稀疏的问题,从而提升推荐的性能。然而,大多数LFM仍然存在一些问题:第一,LFM在对用户进行建模时,忽略了用户如何根据其特征偏好对项目作出决策;第二,采用内积的特征交互假设特征维度之间是相互独立的,而没有考虑到特征维度之间的关联。针对上述问题,提出一种新的推荐模型:基于卷积神经网络(CNN)交互的用户属性偏好建模的推荐模型(UAMC)。该模型首先获得用户的一般偏好、用户属性和项目嵌入,然后将用户属性和项目嵌入进行交互,以探索用户不同的属性对不同项目的偏好;接着将交互过的用户偏好属性送入CNN层来探索不同偏好属性的不同维度的关联,从而得到用户的属性偏好向量;接着使用注意力机制结合用户的一般偏好和CNN层得到的属性偏好,从而获得用户的向量表示;最后采用点积来计算用户对项目的评分。在Movielens-100K、Movielens-1M和Book-crossing这三个真实的数据集上进行了实验。实验结果表明,所提模型在均方根误差(RMSE)上与稀疏数据预测的神经网络分解机(NFM)模型相比分别降低了1.75%、2.78%和0.25%,验证了在LFM的评分预测推荐中,UAMC在提升推荐精度上的有效性。 相似文献
6.
大规模在线教育平台所形成的网络具有数据量大、实体类型丰富、关系复杂等特性。一方面,在线教育正在被大力普及,而另一方面,在线课程却面临低使用率、低完成度及高辍学率的问题。个性化的课程推荐有利于提高学习者的学习积极性,其中,课程能否顺利合格完成是学习者在选课时所考虑的重要因素。鉴于此,提出一种基于学习完成度预测的个性化课程推荐模型。对学生的课程学习会话图进行建模,根据学生的课程学习顺序以及课程的完成情况,生成学生的学习状态表征;同时考虑在线学习环境因素对课程的影响,构建在线课程学习异质图,采用图神经网络生成异质图中课程节点的嵌入;然后通过交互机制融合学习状态表征和课程嵌入,预测学生下一门将学课程的完成度,根据完成度排序从而实现课程推荐。在CNPC、HMXPC和Scho1at3个大规模在线课程学习数据集上的实验结果表明,该模型能有效提升推荐的准确度,在归一化折损累计增益(NDCG)和平均倒数排名(MRR)2个指标上相较于基线模型最优结果均有显著提升,评估指标K值取5时,其NDCG@5指标在3个数据集上分别提升21.08%、17.73%和5.41%,MRR@5指标在3个数据集上分别提升25.6... 相似文献
7.
基于会话的推荐旨在根据当前用户的匿名会话的点击序列信息来预测用户的下一次点击行为。现有方法多数都是通过对用户会话点击序列的物品信息进行建模,并学习物品的向量表示,进而进行推荐。而作为一种粗粒度的信息,物品的类别信息对物品有聚合作用,可作为物品信息的重要补充。基于此,提出了基于会话的多粒度图神经网络推荐模型(SRMGNN)。首先,使用图神经网络(GNN)得到会话序列中的物品和物品类别的嵌入向量表示,并使用注意力网络捕捉用户的注意力信息;然后,将赋予了不同注意力权重值的物品和物品类别信息进行融合后,输入到门限循环单元(GRU)里;最后,通过GRU学习会话序列的物品时序信息,并给出推荐列表。在公开的Yoochoose数据集和Diginetica数据集上进行实验,实验结果验证了该模型在增加了物品类别信息后的优势,且实验结果表明了在Precision@20和MRR@20这2种评价指标上,该模型相较于短期注意力/记忆优先级(STAMP)模型、神经注意力(NARM)模型、GRU4REC等8种模型均有更好的效果。 相似文献
8.
针对传统序列推荐算法时间信息和项目内容信息运用不充分的问题,该文提出基于生成对抗模型的序列推荐算法。通过生成对抗模型将序列建模与时间、内容信息建模分离,充分挖掘用户项目交互的序列信息和项目内容信息。运用卷积神经网络作为生成对抗模型的生成器,捕获用户项目交互的序列模式。运用注意力机制作为生成对抗模型的判别器,捕获交互序列的时间信息和项目内容信息。针对传统序列推荐算法时间信息建模不充分的问题,提出一种改进的时间嵌入方式,充分建模用户项目交互关于时间的周期性模式。利用生成对抗模型同时建模用户的稳定偏好和动态偏好,提升推荐系统的用户体验,并在公开数据集MovieLens-1M和Amazon-Beauty上与现有的优秀算法做比较。实验证明,该文所提出的算法在评价指标HR@N和NDCG@N上较基线方法均有一定提升。 相似文献
9.
评分数据的稀疏性和新物品的冷启动问题一直是阻碍推荐系统发展的难题。针对这些问题,利用物品的图像数据作为辅助信息以提高评分预测的准确性,提出一种基于卷积神经网络与隐语义模型的推荐模型(CNN-LFM)。CNN-LFM模型利用隐语义模型挖掘评分数据,获得用户和物品的潜在特征,其中物品的潜在特征会在卷积神经网络提取的图像特征的约束下不断完善。在真实数据集下进行实验,对结果的定量和定性分析表明CNN-LFM模型不存在新物品的冷启动问题,即使当评分数据十分稀疏时,其性能也远远优于其它推荐模型。 相似文献
10.
电子商务中大量评论数据蕴含着丰富的信息,该信息有助于解决个性化推荐系统存在的数据稀疏问题.为了充分挖掘评论数据蕴含的价值,提高商品推荐的准确率,本文提出了基于耦合CNN评分预测模型的个性化商品推荐方法.该方法首先利用耦合CNN构建评分预测模型,将耦合CNN分为用户网络和商品网络,划分成输入层、卷积层、输出层和共享层;用户评论数据和商品评论数据分别从相应网络输入;在评论数据分析时,从字向量角度进行语义分析,同时改变传统的使用单一大小卷积核处理句子的模式,使用多个并行的卷积层,利用大小不同的卷积核对句子进行特征提取;两个网络的输出将共同汇聚于共享层,在共享层使用因子分解机进行评分预测;最后将结果中的高评分商品推荐给用户.经对比实验验证,本文所给方法能够提高商品推荐的准确率. 相似文献
11.
目的 传统的手绘图像检索方法主要集中在检索相同类别的图像,忽略了手绘图像的细粒度特征。对此,提出了一种新的结合细粒度特征与深度卷积网络的手绘图像检索方法,既注重通过深度跨域实现整体匹配,也实现细粒度细节匹配。方法 首先构建多通道混合卷积神经网络,对手绘图像和自然图像分别进行不同的处理;其次通过在网络中加入注意力模型来获取细粒度特征;最后将粗细特征融合,进行相似性度量,得到检索结果。结果 在不同的数据库上进行实验,与传统的尺度不变特征(SIFT)、方向梯度直方图(HOG)和深度手绘模型Deep SaN(sketch-a-net)、Deep 3DS(sketch)、Deep TSN(triplet sketch net)等5种基准方法进行比较,选取了Top-1和Top-10,在鞋子数据集上,本文方法Top-1正确率提升了12%,在椅子数据集上,本文方法Top-1正确率提升了11%,Top-10提升了3%,与传统的手绘检索方法相比,本文方法得到了更高的准确率。在实验中,本文方法通过手绘图像能在第1幅检索出绝大多数的目标图像,达到了实例级别手绘检索的目的。结论 提出了一种新的手绘图像检索方法,为手绘图像和自然图像的跨域检索提供了一种新思路,进行实例级别的手绘检索,与原有的方法相比,检索精度得到明显提升,证明了本文方法的可行性。 相似文献
12.
Most interaction recognition approaches have been limited to single‐person action classification in videos. However, for still images where motion information is not available, the task becomes more complex. Aiming to this point, we propose an approach for multiperson human interaction recognition in images with keypoint‐based feature image analysis. Proposed method is a three‐stage framework. In the first stage, we propose feature‐based neural network (FCNN) for action recognition trained with feature images. Feature images are body features, that is, effective distances between a set of body part pairs and angular relation between body part triplets, rearranged in 2D gray‐scale image to learn effective representation of complex actions. In the later stage, we propose a voting‐based method for direction encoding to anticipate probable motion in steady images. Finally, our multiperson interaction recognition algorithm identifies which human pairs are interacting with each other using an interaction parameter. We evaluate our approach on two real‐world data sets, that is, UT‐interaction and SBU kinect interaction. The empirical experiments show that results are better than the state‐of‐the‐art methods with recognition accuracy of 95.83% on UT‐I set 1, 92.5% on UT‐I set 2, and 94.28% on SBU clean data set. 相似文献
13.
基于用户兴趣特征提取的推荐算法研究* 总被引:2,自引:0,他引:2
传统的推荐算法一定程度上降低了网络消费者的搜索成本,但难以实时提供消费者满意的推荐服务,也忽略了用户偏好动态转移性。为了提高电子商务系统的推荐质量,从用户偏好的行为特征入手,建立了网络用户的兴趣特征提取模型,并设计了相应的推荐算法。通过对用户兴趣特征提取模型的检验和用户兴趣度矩阵的建立,依据与目标用户偏好相似的邻居用户对商品的兴趣程度预测用户对未浏览商品的兴趣度,并选择兴趣度值较高的N个商品推荐给用户。实验结果表明,在用户偏好动态转移的情况下,所设计的推荐算法的推荐精度和推荐效率明显提高,提高了网络用户的 相似文献
14.
针对基于位置社交网络中的兴趣点推荐存在用户签到数据稀疏、评论文本信息利用不充分、推荐准确度不高等问题, 提出一种基于卷积神经网络的评论文本兴趣点推荐模型(RT-CNN). 首先采用高斯函数利用邻近地理位置加权方法填补矩阵分解模型中缺少的位置信息, 预测用户对未签到位置的潜在兴趣. 然后通过卷积神经网络处理评论文本信息挖掘潜在特征, 深度提取用户情感倾向, 使用Softmax逻辑回归函数获得评论文本与用户和位置兴趣点潜在特征相关的概率, 通过对目标函数的求解提取用户和位置潜在特征向量. 最后融合签到行为、地理位置影响、用户情感倾向、用户潜在特征和位置兴趣点潜在特征进行兴趣点推荐. 在公开的Foursquare网站纽约(NYC)和洛杉矶(LA)两个真实签到数据集进行实验, 结果表明RT-CNN模型相比其他先进的兴趣点推荐模型提高了精确率和召回率, 具有更好的推荐性能. 相似文献
15.
针对假新闻内容检测中分类算法模型的检测性能与泛化性能无法兼顾的问题,提出了一种基于特征聚合的假新闻检测模型CCNN。首先,通过双向长短时循环神经网络提取文本的全局时序特征,并采用卷积神经网络(CNN)提取窗口范围内的词语或词组特征;然后,在卷积神经网络池化层之后,采用基于双中心损失训练的特征聚合层;最后,将双向长短时记忆网络(Bi-LSTM)和CNN的特征数据按深度方向拼接成一个向量之后提供给全连接层,采用均匀损失函数uniform-sigmoid训练模型后输出最终的分类结果。实验结果表明,该模型的F1值为80.5%,在训练集和验证集上的差值为1.3个百分点;与传统的支持向量机(SVM)、朴素贝叶斯(NB)和随机森林(RF)模型相比,所提模型的F1值提升了9~14个百分点;与长短时记忆网络(LSTM)、快速文本分类(FastText)等神经网络模型相比,所提模型的泛化性能提升了1.3~2.5个百分点。由此可见,所提模型能够在提高分类性能的同时保证一定的泛化能力,提升整体性能。 相似文献
16.
为降低特征识别的复杂度,提出基于特征实体、特征实面和特征虚面概念的层次性特征分类方法.通过构造2类神经网络输入矩阵,利用神经网络在特征识别中所具有的优势,实现基于特征面的分层特征识别方法.实例表明:该方法在识别去除材料的特征时比较有效,但识别特征的范围受到一定限制. 相似文献
17.
针对现有目标检测算法在检测时易受到图像尺度变化、目标间遮挡或截断等因素影响的问题,对卷积神经网络(convolutional neural network,CNN)中不同层次的特征进行了研究,提出了一种融合深度网络卷积特征的目标检测算法。算法采用多阶段的特征复用和特征融合减少特征间相关性的损失,最终在PASCAL VOC 2007测试数据集上达到了84.21%的mAP (mean average precison,平均精度均值)值;与未使用特征融合方法以及使用传统特征融合的方法相比,提出的方法分别提高了4.41%和2.71%。 相似文献
18.
传统的基于协同过滤的推荐方法可以挖掘出评分中隐含的特征, 但推荐过程时间长, 且评分矩阵具有稀疏性, 导致样本真实值与预测值间误差较大. 神经网络通过批量训练可以较快计算出对象特征, 卷积神经网络的局部感知与参数共享性使参数个数明显缩减, 利用普通神经网络及卷积神经网络共同实现推荐可使计算时间缩短; 通过调整神经网络的参数, 为卷积神经网络设计合理的特征向量和卷积核大小, 可以提升推荐速度和推荐准确性. 实验表明, 使用神经网络结合卷积神经网络进行推荐的方法能使推荐的绝对误差均值下降至0.67以下, 大幅提升推荐的准确性及有效性. 相似文献
19.
深度卷积神经网络(convolutional neural networks, CNN)作为特征提取器(feature extractor, CNN--FE)已被广泛应用于许多领域并获得显著成功. 根据研究评测可知CNN--FE具有大量参数, 这大大限制了CNN--FE在如智能手机这样的内存有限的设备上的应用. 本文以AlexNet卷积神经网络特征提取器为研究对象, 面向图像分类问题, 在保持图像分类性能几乎不变的情况下减少CNN--FE模型参数量. 通过对AlexNet各层参数分布的详细分析, 作者发现其全连接层包含了大约99%的模型参数, 在图像分类类别较少的情况, AlexNet提取的特征存在冗余. 因此, 将CNN--FE模型压缩问题转化为深度特征选择问题, 联合考虑分类准确率和压缩率, 本文提出了一种新的基于互信息量的特征选择方法, 实现CNN--FE模型压缩. 在公开场景分类数据库以及自建的无线胶囊内窥镜(wireless capsule endoscope, WCE)气泡图片数据库上进行图像分类实验. 结果表明本文提出的CNN--FE模型压缩方法减少了约83%的AlexNet模型参数且其分类准确率几乎保持不变. 相似文献