首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
目的 近几年应用在单幅图像超分辨率重建上的深度学习算法都是使用单种尺度的卷积核提取低分辨率图像的特征信息,这样很容易造成细节信息的遗漏。另外,为了获得更好的图像超分辨率重建效果,网络模型也不断被加深,伴随而来的梯度消失问题会使得训练时间延长,难度加大。针对当前存在的超分辨率重建中的问题,本文结合GoogleNet思想、残差网络思想和密集型卷积网络思想,提出一种多尺度密集残差网络模型。方法 本文使用3种不同尺度卷积核对输入的低分辨率图像进行卷积处理,采集不同卷积核下的底层特征,这样可以较多地提取低分辨率图像中的细节信息,有利于图像恢复。再将采集的特征信息输入残差块中,每个残差块都包含了多个由卷积层和激活层构成的特征提取单元。另外,每个特征提取单元的输出都会通过短路径连接到下一个特征提取单元。短路径连接可以有效地缓解梯度消失现象,加强特征传播,促进特征再利用。接下来,融合3种卷积核提取的特征信息,经过降维处理后与3×3像素的卷积核提取的特征信息相加形成全局残差学习。最后经过重建层,得到清晰的高分辨率图像。整个训练过程中,一幅输入的低分辨率图像对应着一幅高分辨率图像标签,这种端到端的学习方法使得训练更加迅速。结果 本文使用两个客观评价标准PSNR(peak signal-to-noise ratio)和SSIM(structural similarity index)对实验的效果图进行测试,并与其他主流的方法进行对比。最终的结果显示,本文算法在Set5等多个测试数据集中的表现相比于插值法和SRCNN算法,在放大3倍时效果提升约3.4 dB和1.1 dB,在放大4倍时提升约3.5 dB和1.4 dB。结论 实验数据以及效果图证明本文算法能够较好地恢复低分辨率图像的边缘和纹理信息。  相似文献   

2.
目的 随着深度卷积神经网络的兴起,图像超分重建算法在精度与速度方面均取得长足进展。然而,目前多数超分重建方法需要较深的网络才能取得良好性能,不仅训练难度大,而且到网络末端浅层特征信息容易丢失,难以充分捕获对超分重建起关键作用的高频细节信息。为此,本文融合多尺度特征充分挖掘超分重建所需的高频细节信息,提出了一种全局注意力门控残差记忆网络。方法 在网络前端特征提取部分,利用单层卷积提取浅层特征信息。在网络主体非线性映射部分,级联一组递归的残差记忆模块,每个模块融合多个递归的多尺度残差单元和一个全局注意力门控模块来输出具备多层级信息的特征表征。在网络末端,并联多尺度特征并通过像素重组机制实现高质量的图像放大。结果 本文分别在图像超分重建的5个基准测试数据集(Set5、Set14、B100、Urban100和Manga109)上进行评估,在评估指标峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)上相比当前先进的网络模型均获得更优性能,尤其在Manga109测试数据集上本文算法取得的PSNR结果达到39.19 dB,相比当前先进的轻量型算法AWSRN(adaptive weighted super-resolution network)提高0.32 dB。结论 本文网络模型在对低分图像进行超分重建时,能够联合学习网络多层级、多尺度特征,充分挖掘图像高频信息,获得高质量的重建结果。  相似文献   

3.
目的 基于学习的图像超分辨率重建方法已成为近年来图像超分辨率重建研究的热点。针对基于卷积神经网络的图像超分辨率重建(SRCNN)方法网络层少、感受野小、泛化能力差等缺陷,提出了基于中间层监督卷积神经网络的图像超分辨率重建方法,以进一步提高图像重建的质量。方法 设计了具有中间层监督的卷积神经网络结构,该网络共有16层卷积层,其中第7层为中间监督层;定义了监督层误差函数和重建误差函数,用于改善深层卷积神经网络梯度消失现象。训练网络时包括图像预处理、特征提取和图像重建3个步骤,采用不同尺度因子(2、3、4)模糊的低分辨率图像交叉训练网络,以适应对不同模糊程度的图像重建;使用卷积操作提取图像特征时将参数pad设置为1,提高了对图像和特征图的边缘信息利用;利用残差学习完成高分辨率图像重建。结果 在Set5和Set14数据集上进行了实验,并和双三次插值、A+、SelfEx和SRCNN等方法的结果进行比较。在主观视觉评价方面,本文方法重建图像的清晰度和边缘锐度更好。客观评价方面,本文方法的峰值信噪比(PSNR)平均分别提高了2.26 dB、0.28 dB、0.28 dB和0.15 dB,使用训练好的网络模型重建图像耗用的时间不及SRCNN方法的一半。结论 实验结果表明,本文方法获得了更好的主观视觉评价和客观量化评价,提升了图像超分辨率重建质量,泛化能力好,而且图像重建过程耗时更短,可用于自然场景图像的超分辨率重建。  相似文献   

4.
目的 深层卷积神经网络在单幅图像超分辨率任务中取得了巨大成功。从3个卷积层的超分辨率重建卷积神经网络(super-resolution convolutional neural network,SRCNN)到超过300层的残差注意力网络(residual channel attention network,RCAN),网络的深度和整体性能有了显著提高。然而,尽管深层网络方法提高了重建图像的质量,但因计算量大、实时性差等问题并不适合真实场景。针对该问题,本文提出轻量级的层次特征融合空间注意力网络来快速重建图像的高频细节。方法 网络由浅层特征提取层、分层特征融合层、上采样层和重建层组成。浅层特征提取层使用1个卷积层提取浅层特征,并对特征通道进行扩充;分层特征融合层由局部特征融合和全局特征融合组成,整个网络包含9个残差注意力块(residual attention block,RAB),每3个构成一个残差注意力组,分别在组内和组间进行局部特征融合和全局特征融合。在每个残差注意力块内部,首先使用卷积层提取特征,再使用空间注意力模块对特征图的不同空间位置分配不同的权重,提高高频区域特征的注意力,以快速恢复高频细节信息;上采样层使用亚像素卷积对特征图进行上采样,将特征图放大到目标图像的尺寸;重建层使用1个卷积层进行重建,得到重建后的高分辨率图像。结果 在Set5、Set14、BSD(Berkeley segmentation dataset)100、Urban100和Manga109测试数据集上进行测试。当放大因子为4时,峰值信噪比分别为31.98 dB、28.40 dB、27.45 dB、25.77 dB和29.37 dB。本文算法比其他同等规模的网络在测试结果上有明显提升。结论 本文提出的多层特征融合注意力网络,通过结合空间注意力模块和分层特征融合结构的优势,可以快速恢复图像的高频细节并且具有较小的计算复杂度。  相似文献   

5.
针对FSRCNN模型中存在的特征提取不充分和反卷积带来的人工冗余信息的问题, 本文提出了一种基于多尺度融合卷积神经网络的图像超分辨率重建算法. 首先设计了一种多尺度融合的特征提取通道, 解决对图像不同尺寸信息利用不充分问题; 其次在图像重建部分, 采用子像素卷积进行上采样, 抑制反卷积层带来的人工冗余信息. 与FSRCNN模型相比, 在Set5和Set14数据集中, 2倍放大因子下的PSNR值和SSIM值平均提高了0.14 dB、0.001 0, 在3倍放大因子下平均提高0.48 dB、0.009 1. 实验结果表明, 本文算法可以更大程度的保留图像纹理细节, 提升图像整体重建效果.  相似文献   

6.
目的 针对基于学习的图像超分辨率重建算法中存在边缘信息丢失、易产生视觉伪影等问题,提出一种基于边缘增强的深层网络模型用于图像的超分辨率重建。方法 本文算法首先利用预处理网络提取输入低分辨率图像的低级特征,然后将其分别输入到两路网络,其中一路网络通过卷积层级联的卷积网络得到高级特征,另一路网络通过卷积网络和与卷积网络成镜像结构的反卷积网络的级联实现图像边缘的重建。最后,利用支路连接将两路网络的结果进行融合,并将其结果通过一个卷积层从而得到最终重建的具有边缘增强效果的高分辨率图像。结果 以峰值信噪比(PSNR)和结构相似度(SSIM)作为评价指标来评价算法性能,在Set5、Set14和B100等常用测试集上放大3倍情况下进行实验,并且PSNR/SSIM指标分别取得了33.24 dB/0.9156、30.60 dB/0.852 1和28.45 dB/0.787 3的结果,相比其他方法有很大提升。结论 定量与定性的实验结果表明,基于边缘增强的深层网络的图像超分辨重建算法所重建的高分辨率图像不仅在重建图像边缘信息方面有较好的改善,同时也在客观评价和主观视觉上都有很大提高。  相似文献   

7.
目的 超分辨率技术在实际生活中具有较为广泛的应用。经典的基于卷积神经网络的超分辨率(SRCNN)方法存在重建图像纹理结构模糊以及网络模型训练收敛过慢等问题。针对这两个问题,在SRCNN的基础上,提出一种多通道卷积的图像超分辨率(MCSR)算法。方法 通过增加残差链接,选择MSRA初始化方法对网络权值进行初始化,加快模型收敛;引入多通道映射提取更加丰富的特征,使用多层3×3等小卷积核代替单层9×9等大卷积核,更加有效地利用特征,增强模型的超分辨率重构效果。结果 MCSR迭代4×106次即可收敛,在Set5与Set14数据集上边长放大3倍后的平均峰值信噪比分别是32.84 dB和29.28 dB,与SRCNN相比提升显著。结论 MCSR收敛速度更快,并且可以生成轮廓清晰的高分辨率图像,超分辨率效果更加优秀。  相似文献   

8.
目的 现有的基于深度学习的单帧图像超分辨率重建算法大多采用均方误差损失作为目标优化函数,以期获得较高的图像评价指标,然而重建出的图像高频信息丢失严重、纹理边缘模糊,难以满足主观视觉感受的需求。同时,现有的深度模型往往通过加深网络的方式来获得更好的重建效果,导致梯度消失问题的产生,训练难度增加。为了解决上述问题,本文提出融合感知损失的超分辨率重建算法,通过构建以生成对抗网络为主体框架的残差网络模型,提高了对低分率图像的特征重构能力,高度还原图像缺失的高频语义信息。方法 本文算法模型包含生成器子网络和判别器子网络两个模块。生成器模块主要由包含稠密残差块的特征金字塔构成,每个稠密残差块的卷积层滤波器大小均为3×3。通过递进式提取图像不同尺度的高频特征完成生成器模块的重建任务。判别器模块通过在多层前馈神经网络中引入微步幅卷积和全局平均池化,有效地学习到生成器重建图像的数据分布规律,进而判断生成图像的真实性,并将判别结果反馈给生成器。最后,算法对融合了感知损失的目标函数进行优化,完成网络参数的更新。结果 本文利用峰值信噪比(PSNR)和结构相似度(SSIM)两个指标作为客观评价标准,在Set5和Set14数据集上测得4倍重建后的峰值信噪比分别为31.72 dB和28.34 dB,结构相似度分别为0.892 4和0.785 6,与其他方法相比提升明显。结论 结合感知损失的生成式对抗超分辨率重建算法准确恢复了图像的纹理细节,能够重建出视觉上舒适的高分辨率图像。  相似文献   

9.
目的 针对以往基于深度学习的图像超分辨率重建方法单纯加深网络、上采样信息损失和高频信息重建困难等问题,提出一种基于多尺度特征复用混合注意力网络模型用于图像的超分辨率重建。方法 网络主要由预处理模块、多尺度特征复用混合注意力模块、上采样模块、补偿重建模块和重建模块5部分组成。第1部分是预处理模块,该模块使用一个卷积层来提取浅层特征和扩张特征图的通道数。第2部分是多尺度特征复用混合注意力模块,该模块加入了多路网路、混合注意力机制和长短跳连接,以此来进一步扩大特征图的感受野、提高多尺度特征的复用和加强高频信息的重建。第3部分是上采样模块,该模块使用亚像素方法将特征图上采样到目标图像尺寸。第4部分是补偿重建模块,该模块由卷积层和混合注意力机制组成,用来对经过上采样的特征图进行特征补偿和稳定模型训练。第5部分是重建模块,该模块由一个卷积层组成,用来将特征图的通道数恢复至原来数量,以此得到重建后的高分辨率图像。结果 在同等规模模型的比较中,以峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似度(structural similarity index measure,SSIM)作为评价指标来评价算法性能,在Set5、Set14、BSD100(Berkeley segmentation dataset)和Urban100的基准测试集上进行测试。当缩放尺度因子为3时,各测试集上的PSNR/SSIM依次为34.40 dB/0.927 3,30.35 dB/0.842 7,29.11 dB/0.805 2和28.23 dB/0.854 0,相比其他模型有一定提升。结论 量化和视觉的实验结果表明,本文模型重建得到的高分辨率图像不仅在重建边缘和纹理信息有很好的改善,而且在PSNR和SSIM客观评价指标上也有一定的提高。  相似文献   

10.
目的 近年来,深度卷积神经网络成为单帧图像超分辨率重建任务中的研究热点。针对多数网络结构均是采用链式堆叠方式使得网络层间联系弱以及分层特征不能充分利用等问题,提出了多阶段融合网络的图像超分辨重建方法,进一步提高重建质量。方法 首先利用特征提取网络得到图像的低频特征,并将其作为两个子网络的输入,其一通过编码网络得到低分辨率图像的结构特征信息,其二通过阶段特征融合单元组成的多路径前馈网络得到高频特征,其中融合单元将网络连续几层的特征进行融合处理并以自适应的方式获得有效特征。然后利用多路径连接的方式连接不同的特征融合单元以增强融合单元之间的联系,提取更多的有效特征,同时提高分层特征的利用率。最后将两个子网络得到的特征进行融合后,利用残差学习完成高分辨图像的重建。结果 在4个基准测试集Set5、Set14、B100和Urban100上进行实验,其中放大规模为4时,峰值信噪比分别为31.69 dB、28.24 dB、27.39 dB和25.46 dB,相比其他方法的结果具有一定提升。结论 本文提出的网络克服了链式结构的弊端,通过充分利用分层特征提取更多的高频信息,同时利用低分辨率图像本身携带的结构特征信息共同完成重建,并取得了较好的重建效果。  相似文献   

11.
目的 在文档图像版面分析上,主流的深度学习方法克服了传统方法的缺点,能够同时实现文档版面的区域定位与分类,但大多需要复杂的预处理过程,模型结构复杂。此外,文档图像数据不足的问题导致文档图像版面分析无法在通用的深度学习模型上取得较好的性能。针对上述问题,提出一种多特征融合卷积神经网络的深度学习方法。方法 首先,采用不同大小的卷积核并行对输入图像进行特征提取,接着将卷积后的特征图进行融合,组成特征融合模块;然后选取DeeplabV3中的串并行空间金字塔策略,并添加图像级特征对提取的特征图进一步优化;最后通过双线性插值法对图像进行恢复,完成文档版面目标,即插图、表格、公式的定位与识别任务。结果 本文采用mIOU(mean intersection over union)以及PA(pixel accuracy)两个指标作为评价标准,在ICDAR 2017 POD文档版面目标检测数据集上的实验表明,提出算法在mIOU与PA上分别达到87.26%和98.10%。对比FCN(fully convolutional networks),提出算法在mIOU与PA上分别提升约14.66%和2.22%,并且提出的特征融合模块对模型在mIOU与PA上分别有1.45%与0.22%的提升。结论 本文算法在一个网络框架下同时实现了文档版面多种目标的定位与识别,在训练上并不需要对图像做复杂的预处理,模型结构简单。实验数据表明本文算法在训练数据较少的情况下能够取得较好的识别效果,优于FCN和DeeplabV3方法。  相似文献   

12.
目的 图像分割的中心任务是寻找更强大的特征表示,而合成孔径雷达(synthetic aperture radar, SAR)图像中斑点噪声阻碍特征提取。为加强对SAR图像特征的提取以及对特征充分利用,提出一种改进的全卷积分割网络。方法 该网络遵循编码器—解码器结构,主要包括上下文编码模块和特征融合模块两部分。上下文编码模块(contextual encoder module, CEM)通过捕获局部上下文和通道上下文信息增强对图像的特征提取;特征融合模块(feature fusion module, FFM)提取高层特征中的全局上下文信息,将其嵌入低层特征,然后将增强的低层特征并入解码网络,提升特征图分辨率恢复的准确性。结果 在两幅真实SAR图像上,采用5种基于全卷积神经网络的分割算法作为对比,并对CEM与CEM-FFM分别进行实验。结果显示,该网络分割结果的总体精度(overall accuracy, OA)、平均精度(average accuracy, AA)与Kappa系数比5种先进算法均有显著提升。其中,网络在OA上表现最好,CEM在两幅SAR图像上OA分别为91.082%和90...  相似文献   

13.
目的 与传统分类方法相比,基于深度学习的高光谱图像分类方法能够提取出高光谱图像更深层次的特征。针对现有深度学习的分类方法网络结构简单、特征提取不够充分的问题,提出一种堆叠像元空间变换信息的数据扩充方法,用于解决训练样本不足的问题,并提出一种基于不同尺度的双通道3维卷积神经网络的高光谱图像分类模型,来提取高光谱图像的本质空谱特征。方法 通过对高光谱图像的每一像元及其邻域像元进行旋转、行列变换等操作,丰富中心像元的潜在空间信息,达到数据集扩充的作用。将扩充之后的像素块输入到不同尺度的双通道3维卷积神经网络学习训练集的深层特征,实现更高精度的分类。结果 5次重复实验后取平均的结果表明,在随机选取了10%训练样本并通过8倍数据扩充的情况下,Indian Pines数据集实现了98.34%的总体分类精度,Pavia University数据集总体分类精度达到99.63%,同时对比了不同算法的运行时间,在保证分类精度的前提下,本文算法的运行时间短于对比算法,保证了分类模型的稳定性、高效性。结论 本文提出的基于双通道卷积神经网络的高光谱图像分类模型,既解决了训练样本不足的问题,又综合了高光谱图像的光谱特征和空间特征,提高了高光谱图像的分类精度。  相似文献   

14.
目的 为了充分提取版画、中国画、油画、水彩画和水粉画等艺术图像的整体风格和局部细节特征,实现计算机自动分类检索艺术图像的需求,提出通过双核压缩激活模块(double kernel squeeze-and-excitation,DKSE)和深度可分离卷积搭建卷积神经网络对艺术图像进行分类。方法 根据SKNet(selective kernel networks)自适应调节感受野提取图像整体与细节特征的结构特点和SENet(squeeze-and-excitation networks)增强通道特征的特点构建DKSE模块,利用DKSE模块分支上的卷积核提取输入图像的整体特征与局部细节特征;将分支上的特征图进行特征融合,并对融合后的特征图进行特征压缩和激活处理;将处理后的特征加权映射到不同分支的特征图上并进行特征融合;通过DKSE模块与深度可分离卷积搭建卷积神经网络对艺术图像进行分类。结果 使用本文网络模型对有无数据增强(5类艺术图像数据增强后共25 634幅)处理的数据分类,数据增强后的分类准确率比未增强处理的准确率高9.21%。将本文方法与其他网络模型和传统分类方法相比,本文方法的分类准确率达到86.55%,比传统分类方法高26.35%。当DKSE模块分支上的卷积核为1×1和5×5,且放在本文网络模型第3个深度可分离卷积后,分类准确率达到87.58%。结论 DKSE模块可以有效提高模型分类性能,充分提取艺术图像的整体与局部细节特征,比传统网络模型具有更好的分类准确率。  相似文献   

15.
目的 基于深度学习的图像超分辨率重构研究取得了重大进展,如何在更好提升重构性能的同时,有效降低重构模型的复杂度,以满足低成本及实时应用的需要,是该领域研究关注的重要问题。为此,提出了一种基于通道注意力(channel attention,CA)嵌入的Transformer图像超分辨率深度重构方法(image super-resolution with channelattention-embedded Transformer,CAET)。方法 提出将通道注意力自适应地嵌入Transformer变换特征及卷积运算特征,不仅可充分利用卷积运算与Transformer变换在图像特征提取的各自优势,而且将对应特征进行自适应增强与融合,有效改进网络的学习能力及超分辨率性能。结果 基于5个开源测试数据集,与6种代表性方法进行了实验比较,结果显示本文方法在不同放大倍数情形下均有最佳表现。具体在4倍放大因子时,比较先进的SwinIR (image restoration using swin Transformer)方法,峰值信噪比指标在Urban100数据集上得到了0.09 dB的提升,在Manga109数据集提升了0.30 dB,具有主观视觉质量的明显改善。结论 提出的通道注意力嵌入的Transformer图像超分辨率方法,通过融合卷积特征与Transformer特征,并自适应嵌入通道注意力特征增强,可以在较好地平衡网络模型轻量化同时,得到图像超分辨率性能的有效提升,在多个公共实验数据集的测试结果验证了本文方法的有效性。  相似文献   

16.
目的 为了解决基于卷积神经网络的算法对高光谱图像小样本分类精度较低、模型结构复杂和计算量大的问题,提出了一种变维卷积神经网络。方法 变维卷积神经网络对高光谱分类过程可根据内部特征图维度的变化分为空—谱信息融合、降维、混合特征提取与空—谱联合分类的过程。这种变维结构通过改变特征映射的维度,简化了网络结构并减少了计算量,并通过对空—谱信息的充分提取提高了卷积神经网络对小样本高光谱图像分类的精度。结果 实验分为变维卷积神经网络的性能分析实验与分类性能对比实验,所用的数据集为Indian Pines和Pavia University Scene数据集。通过实验可知,变维卷积神经网络对高光谱小样本可取得较高的分类精度,在Indian Pines和Pavia University Scene数据集上的总体分类精度分别为87.87%和98.18%,与其他分类算法对比有较明显的性能优势。结论 实验结果表明,合理的参数优化可有效提高变维卷积神经网络的分类精度,这种变维模型可较大程度提高对高光谱图像中小样本数据的分类性能,并可进一步推广到其他与高光谱图像相关的深度学习分类模型中。  相似文献   

17.
目的 深度学习已经大量应用于合成孔径宽达(SAR)图像目标识别领域,但大多数工作是基于MSTAR数据集的标准操作条件展开研究。当将深度学习应用于同类含变体目标时,例如T72子类,由于目标间差异小,所以仍存在着较大的挑战。本文从极大限度地保留SAR图像输入特征出发,设计一种适用于SAR变体目标识别的深度卷积神经网络结构。方法 设计网络主要由多尺度空间特征提取模块和DenseNet中的稠密块、转移层构成。多尺度特征提取模块置于网络底层,通过使用尺寸分别为1×1、3×3、5×5、7×7、9×9的卷积核,提取丰富空间特征的同时保留输入图像信息。为使输入图像信息更加有效地向后传递,基于DenseNet中的稠密块和转移层进行后续网络层设计。在对训练样本进行样本扩充基础上,分析了输入图像分辨率及目标存在平移和不同噪声水平等情况对模型识别精度的影响,与用于SAR图像目标识别的深度模型识别精度在标准操作条件下进行了对比分析。结果 实验结果表明,对T72 8类变体目标进行分类,设计的模型能够取得95.48%的识别精度,在存在目标平移和不同噪声水平情况下,平均识别精度分别达到了94.61%和86.36%。对10类目标(包括不含变体和含变体情况)在进行数据增强的情况下进行模型训练与测试,分别达到了99.38%和98.81%的识别精度,略优于其他对比模型结构识别精度。结论 提出的模型可以充分利用输入图像以及各卷积层输出的特征,学习目标图像的细节差异,不仅适用于SAR图像变体目标的识别任务,同时在标准操作条件下的识别任务也取得了较高的识别结果。  相似文献   

18.
目的 深度卷积网络在图像超分辨率重建领域具有优异性能,越来越多的方法趋向于更深、更宽的网络设计。然而,复杂的网络结构对计算资源的要求也越来越高。随着智能边缘设备(如智能手机)的流行,高效能的超分重建算法有着巨大的实际应用场景。因此,本文提出一种极轻量的高效超分网络,通过循环特征选择单元和参数共享机制,不仅大幅降低了参数量和浮点运算次数(floating point operations,FLOPs),而且具有优异的重建性能。方法 本文网络由浅层特征提取、深层特征提取和上采样重建3部分构成。浅层特征提取模块包含一个卷积层,产生的特征循环经过一个带有高效通道注意力模块的特征选择单元进行非线性映射提取出深层特征。该特征选择单元含有多个卷积层的特征增强模块,通过保留每个卷积层的部分特征并在模块末端融合增强层次信息。通过高效通道注意力模块重新调整各通道的特征。借助循环机制(循环6次)可以有效提升性能且大幅减少参数量。上采样重建通过参数共享的上采样模块同时将浅层与深层特征进放大、融合得到高分辨率图像。结果 与先进的轻量级网络进行对比,本文网络极大减少了参数量和FLOPs,在Set5、Set14、B100、Urban100和Manga109等基准测试数据集上进行定量评估,在图像质量指标峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)上也获得了更好的结果。结论 本文通过循环的特征选择单元有效挖掘出图像的高频信息,并通过参数共享机制极大减少了参数量,实现了轻量的高质量超分重建。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号