首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
王星  杜伟  陈吉  陈海涛 《控制与决策》2020,35(8):1887-1894
作为样本生成的重要方法之一,生成式对抗网络(GAN)可以根据任意给定数据集中的数据分布生成样本,但它在实际的训练过程中存在生成样本纹理模糊、训练过程不稳定以及模式坍塌等问题.针对以上问题,在深度卷积生成式对抗网络(DCGAN)的基础上,结合残差网络,设计一种基于深度残差生成式对抗网络的样本生成方法RGAN.该样本生成方法利用残差网络和卷积网络分别构建生成模型和判别模型,并结合正负样本融合训练的学习优化策略进行优化训练.其中:深度残差网络可以恢复出丰富的图像纹理;正负样本融合训练的方式可以增加对抗网络的鲁棒性,有效缓解对抗网络训练不稳定和模式坍塌现象的发生.在102 Category Flower Dataset数据集上设计多个仿真实验,实验结果表明RGAN能有效提高生成样本的质量.  相似文献   

2.
针对现有方法分解质量不佳、特征信息不够清晰的问题,提出一种基于深度残差生成对抗网络的本征图像分解算法,用于将单个图像本征分解为反照率和阴影分量.该算法是基于一个全卷积神经网络.通过引入残差块的单个端到端深序列以及两个经过对抗训练的判别器形成了对图像敏感的感知动机度量网络,在不需要任何物理先验和几何信息前提下,实现了单幅...  相似文献   

3.
针对现有图像去模糊算法存在的处理模糊种类单一、耗时长等问题,提出了一种基于聚集残差生成对抗网络的图像去模糊算法.首先,利用生成对抗网络,生成重建图像判别标签,使最后生成的图像更加接近清晰图像;其次,结合聚集残差网络与通道注意力模块,构成特征提取模块,提取中间层的有用特征信息;最后,采用WGAN的Wasserstein-1距离与感知损失结合作为损失函数训练模型,保证生成图像与清晰图像在内容上的一致性.在PyTorch环境下用GOPRO数据集和Kohler数据集测试所提算法,并与L0范数先验、暗通道先验、特异性去模糊、DeepDeblur,DeblurGAN等算法进行对比.实验结果表明,所提算法应用于复原运动模糊图像和高斯模糊图像时,峰值信噪比等评价指标均高于其他算法,并且耗时更短.  相似文献   

4.
高媛  刘志  秦品乐  王丽芳 《计算机应用》2018,38(9):2689-2695
针对医学影像超分辨率重建过程中细节丢失导致的模糊问题,提出了一种基于深度残差生成对抗网络(GAN)的医学影像超分辨率算法。首先,算法包括生成器网络和判别器网络,生成器网络生成高分辨率图像,判别器网络辨别图像真伪。然后,通过设计生成器网络的上采样采用缩放卷积来削弱棋盘效应,并去掉标准残差块中的批量规范化层以优化网络;进一步增加判别器网络中特征图数量以加深网络等方面提高网络性能。最后,用生成损失和判别损失来不断优化网络,指导生成高质量的图像。实验结果表明,对比双线性内插、最近邻插值、双三次插值法、基于深度递归神经网络、基于生成对抗网络的超分辨率方法(SRGAN),所提算法重建出了纹理更丰富、视觉更逼真的图像。相比SRGAN方法,所提算法在峰值信噪比(PSNR)和结构相似度(SSIM)上有0.21 dB和0.32%的提升。所提算法为医学影像超分辨率的理论研究提供了深度残差生成对抗网络的方法,在其实际应用中可靠、有效。  相似文献   

5.
6.
通过生成对抗网络的对抗学习生成仿真图像,已成为人工智能领域的一个研究热点.为了进一步提高生成图像的质量,本文提出了多判别器协同合作的网络框架——采用多个判别器为唯一生成器提供联合损失量,并通过不同的学习率保持各个判别器的差异性.同时,为了满足判别器的Lipschitz连续条件,本文所有的判别器网络一律进行谱归一化操作.实验表明,本文提出的基于多判别器合作框架的生成对抗网络表现较优.  相似文献   

7.
针对目前基于生成对抗网络(GAN)的图像修复算法存在修复效果的视觉连续性不佳、网络训练过程中模型崩溃等问题,提出一种基于双判别器的生成对抗网络的修复算法。该方法将WGAN-GP的损失函数引入全局判别器和局部判别器中,并结合改进的上下文内容损失来训练网络模型,修复破损区域。在CelebA数据集以峰值信噪比PSNR和结构相似性SSIM的标准下的实验结果证明,该算法提高了图像修复结果的质量和训练稳定性。  相似文献   

8.
风格多样的中文字体是一种重要的中国文化符号,它的设计和操作是一项需要大量专业知识的艰巨工作。因此,针对这项工作提出一种基于生成式对抗网络的中文字体风格迁移的新方法。实验中,使用基于残差网络结构的生成式模型,在均方误差约束下,进行生成式模型与判别式模型之间的对抗训练,最后使用训练所得的生成式模型实现不同中文字体间一对一和多对多的风格迁移。实验表明,与之前常用的基于◢l◣▼1▽正则化方法相比,使用这种方法在字体细节生成上有更出色的表现,简化了中文字体的建模方式,提高了生成图像的逼真度,并具有更好的灵活性和通用性。  相似文献   

9.
图像盲去运动模糊一直是计算机视觉领域的一个经典问题,它的目的是在模糊核未知的情况下恢复清晰图像。考虑到更大的感受野以及多尺度信息对恢复清晰图像中的全局信息以及局部细节信息具有重要作用,因此提出的方法对DeblurGAN方法进行改进,提出一种基于条件生成对抗网络的GR-DeblurGAN(granular resi-dual DeblurGAN)的单图像盲去运动模糊方法,采用细粒度残差模块(granular residual block)作为骨干网络,以此在不增加参数量的情况下,扩大感受野,获得多尺度信息。最后在两个广泛使用的数据集:GoPro数据集以及Kohler数据集上进行算法性能评估,并与代表性算法进行对比。从实验结果可以看出,提出的方法改进效果明显,并且在计算开销上面优于其他算法。  相似文献   

10.
11.
目的 在日常的图像采集工作中,由于场景光照条件差或设备的补光能力不足,容易产生低照度图像。为了解决低照度图像视觉感受差、信噪比低和使用价值低(难以分辨图像内容)等问题,本文提出一种基于条件生成对抗网络的低照度图像增强方法。方法 本文设计一个具备编解码功能的卷积神经网络(CNN)模型作为生成模型,同时加入具备二分类功能的CNN作为判别模型,组成生成对抗网络。在模型训练的过程中,以真实的亮图像为条件,依靠判别模型监督生成模型以及结合判别模型与生成模型间的相互博弈,使得本文网络模型具备更好的低照度图像增强能力。在本文方法使用过程中,无需人工调节参数,图像输入模型后端到端处理并输出结果。结果 将本文方法与现有方法进行比较,利用本文方法增强的图像在亮度、清晰度以及颜色还原度等方面有了较大的提升。在峰值信噪比、直方图相似度和结构相似性等图像质量评价指标方面,本文方法比其他方法的最优值分别提高了0.7 dB、3.9%和8.2%。在处理时间上,本文方法处理图像的速度远远超过现有的传统方法,可达到实时增强的要求。结论 通过实验比较了本文方法与现有方法对于低照度图像的处理效果,表明本文方法具有更优的处理效果,同时具有更快的处理速度。  相似文献   

12.
目的 现有的基于深度学习的单帧图像超分辨率重建算法大多采用均方误差损失作为目标优化函数,以期获得较高的图像评价指标,然而重建出的图像高频信息丢失严重、纹理边缘模糊,难以满足主观视觉感受的需求。同时,现有的深度模型往往通过加深网络的方式来获得更好的重建效果,导致梯度消失问题的产生,训练难度增加。为了解决上述问题,本文提出融合感知损失的超分辨率重建算法,通过构建以生成对抗网络为主体框架的残差网络模型,提高了对低分率图像的特征重构能力,高度还原图像缺失的高频语义信息。方法 本文算法模型包含生成器子网络和判别器子网络两个模块。生成器模块主要由包含稠密残差块的特征金字塔构成,每个稠密残差块的卷积层滤波器大小均为3×3。通过递进式提取图像不同尺度的高频特征完成生成器模块的重建任务。判别器模块通过在多层前馈神经网络中引入微步幅卷积和全局平均池化,有效地学习到生成器重建图像的数据分布规律,进而判断生成图像的真实性,并将判别结果反馈给生成器。最后,算法对融合了感知损失的目标函数进行优化,完成网络参数的更新。结果 本文利用峰值信噪比(PSNR)和结构相似度(SSIM)两个指标作为客观评价标准,在Set5和Set14数据集上测得4倍重建后的峰值信噪比分别为31.72 dB和28.34 dB,结构相似度分别为0.892 4和0.785 6,与其他方法相比提升明显。结论 结合感知损失的生成式对抗超分辨率重建算法准确恢复了图像的纹理细节,能够重建出视觉上舒适的高分辨率图像。  相似文献   

13.
王硕诚  苟刚  葛梦园 《计算机应用研究》2020,37(5):1514-1517,1535
目前没有能够使用简单的网络结构生成高质量特定图像的生成模型,针对这一项任务,本文结合边界平衡生成对抗网络(boundary equilibrium generative adversarial network,BEGAN)的优点,添加附加条件特征以及均方误差损失,建立了条件边界平衡生成对抗网络(conditional-BEGAN,C-BEGAN),使用这种方法提取其中的生成模型用于特定图像的生成,实验结果表明,该方法相比于其他监督类生成模型可以使用更简单的网络达到更快的收敛速度并且能够生成具有更好质量以及多样性的图片。  相似文献   

14.
目的 将半监督对抗学习应用于图像语义分割,可以有效减少训练过程中人工生成标记的数量。作为生成器的分割网络的卷积算子只具有局部感受域,因此对于图像不同区域之间的远程依赖关系只能通过多个卷积层或增加卷积核的大小进行建模,但这种做法也同时失去了使用局部卷积结构获得的计算效率。此外,生成对抗网络(generative adversarial network, GAN)中的另一个挑战是判别器的性能控制。在高维空间中,由判别器进行的密度比估计通常是不准确且不稳定的。为此,本文提出面向图像语义分割的半监督对抗学习方法。方法 在生成对抗网络的分割网络中附加两层自注意模块,在空间维度上对语义依赖关系进行建模。自注意模块通过对所有位置的特征进行加权求和,有选择地在每个位置聚合特征。因而能够在像素级正确标记值数据的基础上有效处理输入图像中广泛分离的空间区域之间的关系。同时,为解决提出的半监督对抗学习方法的稳定性问题,在训练过程中将谱归一化应用到对抗网络的判别器中,这种加权归一化方法不仅可以稳定判别器网络的训练,并且不需要对唯一的超参数进行密集调整即可获得满意性能,且实现简单,计算量少,即使在缺乏互补的正则化...  相似文献   

15.
年龄信息作为人类生物特征识别的重要组成部分,在社会保障和数字娱乐等领域具有广泛的应用前景。人脸年龄合成技术由于其广泛的应用价值,受到了越来越多学者的重视,已经成为计算机视觉领域的重要研究方向之一。随着深度学习的快速发展,基于生成对抗网络的人脸年龄合成技术已成为研究热点。尽管基于生成对抗网络的人脸年龄合成方法取得了不错的成果,但生成的人脸年龄图像仍存在图像质量较差、真实感较低、年龄转换效果和多样性不足等问题。主要因为当前人脸年龄合成研究仍存在以下困难: 1)现有人脸年龄合成数据集的限制; 2)引入人脸年龄合成的先验知识不足; 3)人脸年龄图像的细粒度性被忽视; 4)高分辨率下的人脸年龄合成问题;5)目前人脸年龄合成方法的评价标准不规范。本文对目前人脸年龄合成技术进行全面综述,以人脸年龄合成方法为研究对象,阐述其研究现状。通过调研文献,对人脸年龄合成方法进行分类,重点介绍了基于生成对抗网络的人脸年龄合成方法。此外,本文还讨论了常用的人脸年龄合成数据集及评价指标,分析了各种人脸年龄合成方法的基本思想、特点及其局限性,对比了部分代表方法的性能,指出了该领域目前存在的挑战并提供了一些具有潜力的研究方向,为研究者们解决存在的问题提供便利。  相似文献   

16.
生成对抗网络已经成为深度学习领域最热门的研究方向之一,其最大的优势在于能够以无监督的方式来拟合一个未知的分布。目前,生成对抗网络在图像生成领域大放异彩,其能够产生一些高质量的图像,但也暴露了一些弊端。在生成图像的过程中,经常会出现模式坍塌问题,从而导致生成的样本过于单一。为了解决这个问题,对生成对抗网络的模型结构和损失函数加以改进,使判别器能够从多个角度来度量生成数据的分布和真实数据的分布之间的差异,从而改善了生成样本的多样性。通过在多个数据集上进行实验,结果显示,提出的模型在很大程度上缓解了模式坍塌问题。  相似文献   

17.
高媛  吴帆  秦品乐  王丽芳 《计算机应用》2019,39(12):3528-3534
针对传统医学图像融合中需要依靠先验知识手动设置融合规则和参数,导致融合效果存在不确定性、细节表现力不足的问题,提出了一种基于改进生成对抗网络(GAN)的脑部计算机断层扫描(CT)/磁共振(MR)图像融合算法。首先,对生成器和判别器两个部分的网络结构进行改进,在生成器网络的设计中采用残差块和快捷连接以加深网络结构,更好地捕获深层次的图像信息;然后,去掉常规网络中的下采样层,以减少图像传输过程中的信息损失,并将批量归一化改为层归一化,以更好地保留源图像信息,增加判别器网络的深度以提高网络性能;最后,连接CT图像和MR图像,将其输入到生成器网络中得到融合图像,通过损失函数不断优化网络参数,训练出最适合医学图像融合的模型来生成高质量的图像。实验结果表明,与当前表现优良的基于离散小波变换(DWT)算法、基于非下采样剪切波变换(NSCT)算法、基于稀疏表示(SR)算法和基于图像分类块稀疏表示(PSR)算法对比,所提算法在互信息(MI)、信息熵(IE)、结构相似性(SSIM)上均表现良好,最终的融合图像纹理和细节丰富,同时避免了人为因素对融合效果稳定性的影响。  相似文献   

18.
传统图像修复算法在修复区域涉及复杂非重复结构(如面部)时,不能准确捕捉到高级语义。近三年来基于深度学习的方法被应用于图像修复中,其修复结果的结构相似性较传统方法提高了10%以上。首先阐述了面部修复技术的研究发展历程,主要介绍了基于深度学习的面部修复算法,将其分为无监督和有监督两大类方法,在每一类中重点对近年来涌现的各种面部修复算法进行分析和总结;然后归纳了当前主流的六类图像数据集,以及算法性能评价指标;最后讨论了面部修复技术的未来研究方向。  相似文献   

19.
目的 破损图像修复是一项具有挑战性的任务,其目的是根据破损图像中已知内容对破损区域进行填充。许多基于深度学习的破损图像修复方法对大面积破损的图像修复效果欠佳,且对高分辨率破损图像修复的研究也较少。对此,本文提出基于卷积自编码生成式对抗网络(convolutional auto-encoder generative adversarial network,CAE-GAN)的修复方法。方法 通过训练生成器学习从高斯噪声到低维特征矩阵的映射关系,再将生成器生成的特征矩阵升维成高分辨率图像,搜索与待修复图像完好部分相似的生成图像,并将对应部分覆盖到破损图像上,实现高分辨率破损图像的修复。结果 通过将学习难度较大的映射关系进行拆分,降低了单个映射关系的学习难度,提升了模型训练效果,在4个数据集上对不同破损程度的512×512×3高分辨率破损图像进行修复,结果表明,本文方法成功预测了大面积缺失区域的信息。与CE(context-encoders)方法相比,本文方法在破损面积大的图像上的修复效果提升显著,峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(str...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号