首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 218 毫秒
1.
目的 高光谱图像的高维特性和非线性结构给聚类任务带来了"维数灾难"和线性不可分问题,以往的工作将特征提取过程与聚类过程互相剥离,难以同时优化。为了解决上述问题,提出了一种新的嵌入式深度神经网络模糊C均值聚类方法(EDFCC)。方法 EDFCC算法为了提取更加有效的深层特征,联合优化高光谱图像的特征提取和聚类过程,将模糊C均值聚类算法嵌入至深度自编码器网络中,可以保持两任务联合优化的优势,同时利用深度自编码器网络降维以及逼近任意非线性函数的能力,逐步将原始数据映射到潜在特征空间,提取数据的深层特征。所提方法采用模糊C均值聚类算法约束特征提取过程,学习适用于聚类的高光谱数据深层特征,动态调整聚类指示矩阵。结果 实验结果表明,EDFCC算法在Indian Pines和Pavia University两个高光谱数据集上的聚类精度分别达到了42.95%和60.59%,与当前流行的低秩子空间聚类算法(LRSC)相比分别提高了3%和4%,相比于基于自编码器的数据聚类算法(AEKM)分别提高了2%和3%。结论 EDFCC算法能够从高光谱图像的高维光谱信息中提取更加有效的深层特征,提升聚类精度,并且由于EDFCC算法不需要额外的训练过程,大大提升了聚类效率。  相似文献   

2.
目的 高光谱图像波段数目巨大,导致在解译及分类过程中出现“维数灾难”的现象。针对该问题,在K-means聚类算法基础上,考虑各个波段对不同聚类的重要程度,同时顾及类间信息,提出一种基于熵加权K-means全局信息聚类的高光谱图像分类算法。方法 首先,引入波段权重,用来刻画各个波段对不同聚类的重要程度,并定义熵信息测度表达该权重。其次,为避免局部最优聚类,引入类间距离测度实现全局最优聚类。最后,将上述两类测度引入K-means聚类目标函数,通过最小化目标函数得到最优分类结果。结果 为了验证提出的高光谱图像分类方法的有效性,对Salinas高光谱图像和Pavia University高光谱图像标准图中的地物类别根据其光谱反射率差异程度进行合并,将合并后的标准图作为新的标准分类图。分别采用本文算法和传统K-means算法对Salinas高光谱图像和Pavia University高光谱图像进行实验,并定性、定量地评价和分析了实验结果。对于图像中合并后的地物类别,光谱反射率差异程度大,从视觉上看,本文算法较传统K-means算法有更好的分类结果;从分类精度看,本文算法的总精度分别为92.20%和82.96%, K-means算法的总精度分别为83.39%和67.06%,较K-means算法增长8.81%和15.9%。结论 提出一种基于熵加权K-means全局信息聚类的高光谱图像分类算法,实验结果表明,本文算法对高光谱图像中具有不同光谱反射率差异程度的各类地物目标均能取得很好的分类结果。  相似文献   

3.
目的 高光谱图像分类是遥感领域的基础问题,高光谱图像同时包含丰富的光谱信息和空间信息,传统模型难以充分利用两种信息之间的关联性,而以卷积神经网络为主的有监督深度学习模型需要大量标注数据,但标注数据难度大且成本高。针对现有模型的不足,本文提出了一种无监督范式下的高光谱图像空谱融合方法,建立了3D卷积自编码器(3D convolutional auto-encoder,3D-CAE)高光谱图像分类模型。方法 3D卷积自编码器由编码器、解码器和分类器构成。将高光谱数据预处理后,输入到编码器中进行无监督特征提取,得到一组特征图。编码器的网络结构为3个卷积块构成的3D卷积神经网络,卷积块中加入批归一化技术防止过拟合。解码器为逆向的编码器,将提取到的特征图重构为原始数据,用均方误差函数作为损失函数判断重构误差并使用Adam算法进行参数优化。分类器由3层全连接层组成,用于判别编码器提取到的特征。以3D-CNN (three dimensional convolutional neural network)为自编码器的主干网络可以充分利用高光谱图像的空间信息和光谱信息,做到空谱融合。以端到端的方式对模型进行训练可以省去复杂的特征工程和数据预处理,模型的鲁棒性和稳定性更强。结果 在Indian Pines、Salinas、Pavia University和Botswana等4个数据集上与7种传统单特征方法及深度学习方法进行了比较,本文方法均取得最优结果,总体分类精度分别为0.948 7、0.986 6、0.986 2和0.964 9。对比实验结果表明了空谱融合和无监督学习对于高光谱遥感图像分类的有效性。结论 本文模型充分利用了高光谱图像的光谱特征和空间特征,可以做到无监督特征提取,无需大量标注数据的同时分类精度高,是一种有效的高光谱图像分类方法。  相似文献   

4.
目的 传统图像聚类算法多利用像元的光谱信息,较少考虑图像的空间信息,容易受到噪声干扰。针对该问题,提出一种整合超像元分割(SLIC)和峰值密度(DP)的高光谱图像聚类算法。方法 首先,利用超像元分割技术对高光谱图像进行分割并提取超像元光谱特征;然后,根据提取的超像元光谱特征,计算其峰值密度信息,搜索超像元光谱簇,构建像元与类别间的隶属度关系。最后,利用高光谱模拟数据以及两组真实高光谱图像评价算法的鲁棒性和精度。结果 在不同信噪比的模拟数据中,SLIC-DP算法在调整芮氏指标(ARI)最优的条件下,较K-means和SLIC-Kmeans的方差降低61.86%和41.61%,体现优越的鲁棒性。在高光谱数据集Salinas-A和Indian Pines中,SLIC-DP算法的ARI为0.777 1和0.325 7,较K-Means和SLIC-KMeans聚类算法分别增长10.71%,5.01%与78.86%,25.27%。结论 本文算法抗噪声能力强,充分利用空间信息与光谱信息,有效提升高光谱图像聚类精度。经验证,能满足高光谱图像信息提取和分析的要求,可进一步推广和研究。  相似文献   

5.
目的 为了更有效地提高中智模糊C-均值聚类对非凸不规则数据的聚类性能和噪声污染图像的分割效果,提出了核空间中智模糊均值聚类算法。方法 引入核函数概念。利用满足Mercer条件的非线性问题,用非线性变换把低维空间线性不可分的输入模式空间映射到一个先行可分的高维特征空间进行中智模糊聚类分割。结果 通过对大量图像添加不同的加性和乘性噪声进行分割测试获得的核空间中智模糊聚类算法提高了现有算法的对含噪声聚类的鲁棒性和分类性能。峰值信噪比至少提高0.8 dB。结论 本文算法具有显著的分割效果和良好的鲁棒性,并适应于医学,遥感图像处理需要。  相似文献   

6.
目的 传统模糊C-均值聚类应用于图像分割仅考虑像素本身的聚类问题,无法克服噪声干扰对图像分割结果的影响,不利于受到噪声干扰的工业图像、医学影像和高分遥感影像等进行目标提取、识别和解译。嵌入像素空间邻域信息或局部信息的鲁棒模糊C-均值聚类分割算法是近年来图像分割理论研究中的热点课题。为此,针对现有的鲁棒核空间模糊聚类算法非常耗时且抑制噪声能力弱、不适合强噪声干扰下大幅面图像快速分割等问题,提出一种快速鲁棒核空间模糊聚类分割算法。方法 利用待分割图像中像素邻域的灰度信息和空间位置等信息构建线性加权滤波图像,对其进行鲁棒核空间模糊聚类。为了进一步提高算法实时性,引入当前聚类像素与其邻域像素均值所对应的2维直方图信息,构造一种基于2维直方图的鲁棒核空间模糊聚类快速分割最优化数学模型,采用拉格朗日乘子法获得图像分割的像素聚类迭代表达式。结果 对大幅面图像添加一定强度的高斯、椒盐以及混合噪声,以及未加噪标准图像的分割测试结果表明,本文算法比基于邻域空间约束的核模糊C-均值聚类等算法的峰值信噪比至少提高1.5 dB,误分率降低约5%,聚类性能评价的划分系数提高约10%,运行速度比核模糊C-均值聚类和基于邻域空间约束的鲁棒核模糊C-均值聚类算法至少提高30%,与1维直方图核空间模糊C-均值聚类算法具有相当的时间开销,所得分割结果具有较好的主观视觉效果。结论 通过理论分析和实验验证,本文算法相比现有空间邻域信息约束的鲁棒核空间模糊聚类等算法具有更强的抗噪鲁棒性、更优的分割性能和实时性,对大幅面遥感、医学等影像快速解译具有积极的促进作用,能更好地满足实时性要求较高场合的图像分割需要。  相似文献   

7.
目的 针对现有广义均衡模糊C-均值聚类不收敛问题,提出一种改进广义均衡模糊聚类新算法,并将其推广至再生希尔伯特核空间以便提高该类算法的普适性。方法 在现有广义均衡模糊C-均值聚类目标函数的基础上,利用Schweizer T范数极限表达式的性质构造了新的广义均衡模糊C-均值聚类最优化目标函数,然后采用拉格朗日乘子法获取其迭代求解所对应的隶属度和聚类中心表达式,同时对其聚类中心迭代表达式进行修改并得到一类聚类性能显著改善的修正聚类算法;最后利用非线性函数将数据样本映射至高维特征空间获得核空间广义均衡模糊聚类算法。结果 对Iris标准文本数据聚类和灰度图像分割测试表明,提出的改进广义均衡模模糊聚类新算法及其修正算法具有良好的分类性能,核空间广义均衡模糊聚类算法对比现有融入类间距离的改进模糊C-均值聚类(FCS)算法和改进再生核空间的模糊局部C-均值聚类(KFLICM)算法能将图像分割的误分率降低10%30%。结论 本文算法克服了现有广义均衡模糊C-均值聚类算法的缺陷,同时改善了聚类性能,适合复杂数据聚类分析的需要。  相似文献   

8.
目的 模糊车牌识别是车牌识别领域的难题,针对模糊车牌图像收集困难、车牌识别算法模型太大、不适用于移动或嵌入式设备等不足,本文提出了一种轻量级的模糊车牌识别方法,使用深度卷积生成对抗网络生成模糊车牌图像,用于解决现实场景中模糊车牌难以收集的问题,在提升算法识别准确性的同时提升了部署泛化能力。方法 该算法主要包含两部分,即基于优化卷积生成对抗网络的模糊车牌图像生成和基于深度可分离卷积网络与双向长短时记忆(long short-term memory,LSTM)的轻量级车牌识别。首先,使用Wasserstein距离优化卷积生成对抗网络的损失函数,提高生成车牌图像的多样性和稳定性;其次,在卷积循环神经网络的基础上,结合深度可分离卷积设计了一个轻量级的车牌识别模型,深度可分离卷积网络在减少识别算法计算量的同时,能对训练样本进行有效的特征学习,将特征图转换为特征序列后输入到双向LSTM网络中,进行序列学习与标注。结果 实验表明,增加生成对抗网络生成的车牌图像,能有效提高本文算法、传统车牌识别和基于深度学习的车牌识别方法的识别率,为进一步提高各类算法的识别率提供了一种可行方案。结合深度可分离卷积的轻量级车牌识别模型,识别率与基于标准循环卷积神经网络(convolutional recurrent neural network,CRNN)的车牌识别方法经本文生成图像提高后的识别率相当,但在模型的大小和识别速度上都优于标准的CRNN模型,本文算法的模型大小为45 MB,识别速度为12.5帧/s,标准CRNN模型大小是82 MB,识别速度只有7帧/s。结论 使用生成对抗网络生成图像,可有效解决模糊车牌图像样本不足的问题;结合深度可分离卷积的轻量级车牌识别模型,具有良好的识别准确性和较好的部署泛化能力。  相似文献   

9.
目的 为了提高2维直方图模糊C均值聚类分割算法的抗噪性和普适性,提出了属性加权2维直方图模糊C均值聚类分割新方法。方法 针对2维直方图模糊C均值聚类分割算法存在阈值参数选取不当导致抗噪性能差的不足,将属性加权引入2维直方图模糊C均值聚类并有效解决了每维属性聚类贡献度的问题。结果 本文算法相比2维直方图模糊C均值聚类分割法抗椒盐和高斯噪声性能平均提高了2~3 dB;同时,相比模糊局部C均值聚类分割法抗椒盐噪声性能平均提高了2~3 dB且抗高斯噪声性能稍差大约1 dB,但本文算法相比模糊局部C均值聚类分割法的速度平均提高了大约40倍。结论 实验结果表明,本文算法相比现有2维直方图模糊C均值聚类算法更适合噪声图像分割;同时,相比模糊局部C均值聚类算法更有利于实时性要求较高场合的目标跟踪和识别等需要。同时从大量图像测试得出,本文算法对于一般人工合成图像、智能交通图像及遥感图像等具有普遍适用性。  相似文献   

10.
目的 针对用于SAR (synthetic aperture radar) 目标识别的深度卷积神经网络模型结构的优化设计难题,在分析卷积核宽度对分类性能影响基础上,设计了一种适用于SAR目标识别的深度卷积神经网络结构。方法 首先基于二维随机卷积特征和具有单个隐层的神经网络模型-超限学习机分析了卷积核宽度对SAR图像目标分类性能的影响;然后,基于上述分析结果,在实现空间特征提取的卷积层中采用多个具有不同宽度的卷积核提取目标的多尺度局部特征,设计了一种适用于SAR图像目标识别的深度模型结构;最后,在对MSTAR (moving and stationary target acquisition and recognition) 数据集中的训练样本进行样本扩充基础上,设定了深度模型训练的超参数,进行了深度模型参数训练与分类性能验证。结果 实验结果表明,对于具有较强相干斑噪声的SAR图像而言,采用宽度更大的卷积核能够提取目标的局部特征,提出的模型因能从输入图像提取目标的多尺度局部特征,对于10类目标的分类结果(包含非变形目标和变形目标两种情况)接近或优于已知文献的最优分类结果,目标总体分类精度分别达到了98.39%和97.69%,验证了提出模型结构的有效性。结论 对于SAR图像目标识别,由于与可见光图像具有不同的成像机理,应采用更大的卷积核来提取目标的空间特征用于分类,通过对深度模型进行优化设计能够提高SAR图像目标识别的精度。  相似文献   

11.
目的 为了解决基于卷积神经网络的算法对高光谱图像小样本分类精度较低、模型结构复杂和计算量大的问题,提出了一种变维卷积神经网络。方法 变维卷积神经网络对高光谱分类过程可根据内部特征图维度的变化分为空—谱信息融合、降维、混合特征提取与空—谱联合分类的过程。这种变维结构通过改变特征映射的维度,简化了网络结构并减少了计算量,并通过对空—谱信息的充分提取提高了卷积神经网络对小样本高光谱图像分类的精度。结果 实验分为变维卷积神经网络的性能分析实验与分类性能对比实验,所用的数据集为Indian Pines和Pavia University Scene数据集。通过实验可知,变维卷积神经网络对高光谱小样本可取得较高的分类精度,在Indian Pines和Pavia University Scene数据集上的总体分类精度分别为87.87%和98.18%,与其他分类算法对比有较明显的性能优势。结论 实验结果表明,合理的参数优化可有效提高变维卷积神经网络的分类精度,这种变维模型可较大程度提高对高光谱图像中小样本数据的分类性能,并可进一步推广到其他与高光谱图像相关的深度学习分类模型中。  相似文献   

12.
目的 高光谱遥感影像数据包含丰富的空间和光谱信息,但由于信号的高维特性、信息冗余、多种不确定性和地表覆盖的同物异谱及同谱异物现象,导致高光谱数据结构呈高度非线性。3D-CNN(3D convolutional neural network)能够利用高光谱遥感影像数据立方体的特性,实现光谱和空间信息融合,提取影像分类中重要的有判别力的特征。为此,提出了基于双卷积池化结构的3D-CNN高光谱遥感影像分类方法。方法 双卷积池化结构包括两个卷积层、两个BN(batch normalization)层和一个池化层,既考虑到高光谱遥感影像标签数据缺乏的问题,也考虑到高光谱影像高维特性和模型深度之间的平衡问题,模型充分利用空谱联合提供的语义信息,有利于提取小样本和高维特性的高光谱影像特征。基于双卷积池化结构的3D-CNN网络将没有经过特征处理的3D遥感影像作为输入数据,产生的深度学习分类器模型以端到端的方式训练,不需要做复杂的预处理,此外模型使用了BN和Dropout等正则化策略以避免过拟合现象。结果 实验对比了SVM(support vector machine)、SAE(stack autoencoder)以及目前主流的CNN方法,该模型在Indian Pines和Pavia University数据集上最高分别取得了99.65%和99.82%的总体分类精度,有效提高了高光谱遥感影像地物分类精度。结论 讨论了双卷积池化结构的数目、正则化策略、高光谱首层卷积的光谱采样步长、卷积核大小、相邻像素块大小和学习率等6个因素对实验结果的影响,本文提出的双卷积池化结构可以根据数据集特点进行组合复用,与其他深度学习模型相比,需要更少的参数,计算效率更高。  相似文献   

13.
目的 与传统分类方法相比,基于深度学习的高光谱图像分类方法能够提取出高光谱图像更深层次的特征。针对现有深度学习的分类方法网络结构简单、特征提取不够充分的问题,提出一种堆叠像元空间变换信息的数据扩充方法,用于解决训练样本不足的问题,并提出一种基于不同尺度的双通道3维卷积神经网络的高光谱图像分类模型,来提取高光谱图像的本质空谱特征。方法 通过对高光谱图像的每一像元及其邻域像元进行旋转、行列变换等操作,丰富中心像元的潜在空间信息,达到数据集扩充的作用。将扩充之后的像素块输入到不同尺度的双通道3维卷积神经网络学习训练集的深层特征,实现更高精度的分类。结果 5次重复实验后取平均的结果表明,在随机选取了10%训练样本并通过8倍数据扩充的情况下,Indian Pines数据集实现了98.34%的总体分类精度,Pavia University数据集总体分类精度达到99.63%,同时对比了不同算法的运行时间,在保证分类精度的前提下,本文算法的运行时间短于对比算法,保证了分类模型的稳定性、高效性。结论 本文提出的基于双通道卷积神经网络的高光谱图像分类模型,既解决了训练样本不足的问题,又综合了高光谱图像的光谱特征和空间特征,提高了高光谱图像的分类精度。  相似文献   

14.
针对传统谱聚类算法难以应用于大规模高光谱图像,以及现有的改进谱聚类算法对大规模高光谱图像的处理效果不佳的问题,为降低聚类数据的复杂度,以降低聚类过程的计算成本从而多方面提升聚类性能,提出一种基于超像素锚图二重降维的高光谱聚类算法。首先,对高光谱数据进行主成分分析(PCA)处理,并针对高光谱图像的区域特性对其进行基于超像素切割的降维;其次,通过构造锚图的思想对上一步所得数据进行锚点的选取,并构建邻接锚图来实现二重降维,从而进行谱聚类;同时,为去除算法运行中人为调节参数的环节,在构建锚图时采用一种去除高斯核的无核锚图构造方式以实现自动构图。在Indian Pines数据集和Salinas数据集上的实验结果表明所提算法在保证可用性与低耗时的前提下可提高聚类的整体效果,从而验证了所提算法能提高聚类的质量与性能。  相似文献   

15.
针对高光谱遥感图像训练样本较少、光谱维度较高、空间特征与频谱特征存在差异性而导致高光谱地物分类的特征提取不合理、分类精度不稳定和训练时间长等问题,提出了基于3D密集全卷积(3D-DSFCN)的高光谱图像(HSI)分类算法。算法通过密集模块中的3D卷积核分别提取光谱特征和空间特征,采用特征映射模块替换传统网络中的池化层和全连接层,最后通过softmax分类器进行分类。实验结果表明,基于3D-DSFCN的HSI分类方法提高了地物分类的准确率、增强了低频标签的分类稳定性。  相似文献   

16.
ABSTRACT

Sparse regression is now a popular method for hyperspectral unmixing relying on a prior spectral library. However, it is limited by the high mutual coherence spectral library which contains high similarity atoms. In order to improve the accuracy of sparse unmixing with a high mutual coherence spectral library, a new algorithm based on kernel sparse representation unmixing model with total variation constraint is proposed in this paper. By constructing an appropriate kernel function to expand similarity measure scale, library atoms and hyperspectral data are mapped to kernel space where sparse regression algorithms are then applied. Experiments conducted with both simulated and real hyperspectral data sets indicate that the proposed algorithm effectively improves the unmixing performance when using a high mutual coherence spectral library because of its ability to precisely extract endmembers in hyperspectral images. Compared with other state-of-the-art algorithms, the proposed algorithm obtains low reconstruction errors in pixels with different mixed degree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号