首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
碳纳米管对酚醛树脂/碳纤维复合材料力学性能的影响   总被引:2,自引:1,他引:2  
利用碳纳米管(CNTs)对酚醛树脂(PF)进行改性,研究了CNTs含量对PF/碳纤维(CF)复合材料力学性能的影响。研究表明,CNTs能够明显提高PF/CF复合材料的力学性能,当CNTs的含量为0.5%时,复合材料的弯曲强度达到最大值(891.8MPa),与未加入CNTs时相比提高了168.4MPa,而弯曲弹性模量降低了9.5GPa;当CNTs的含量为1.5%时,复合材料的压缩强度、层间剪切强度、冲击强度均达到最大值,与未加入CNTs时相比,分别提高了10.4%、79.2%、71.9%。  相似文献   

2.
以石墨、碳纤维(CF)、聚酰亚胺(PI)三元复合材料为研究对象,考察了CF体积含量对PI三元复合材料导热性能的影响,并采用了拟二元体系模型探讨了石墨和CF填充PI复合材料的协同效应。结果表明,CF的加入可以提高复合材料的力学性能:拉伸强度呈现先升高后降低的趋势,当CF含量为11.8 %(体积分数,下同)时,拉伸强度可达66.37 MPa;弯曲强度随着CF体积含量的增而增加,当CF含量为24.6 %时,弯曲强度可达103.3 MPa。复合材料热导率呈非线性增长,表明石墨和CF间存在协同效应;当CF含量为34.1 %时,环境扫描电子显微镜分析表明,CF与石墨能很好地搭接,增大了传热面积,复合材料热导率可达0.512 W/(m·K),约是其计算值的2倍。  相似文献   

3.
研究了采用碳纤维(CF)和碳纳米管(CNTs)增强聚苯硫醚(PPS)的力学性能和导电性能。实验分别采用CF和CNTs为添加剂,通过球磨混合后在平板硫化机上进行模压成型,制备出CF/PPS、CNTs/PPS和CNTs/CFPPS/复合材料。采用万能试验机测试复合材料的拉伸性能;采用数字式四探针测试仪测试材料的电导率。实验研究了CF和CNTs含量对其复合材料的导电性能和力学性能的影响,并进一步研究同时添加CF和CNTs对复合材料增强作用。通过分析复合材料的导电性能和力学性能,分别得出CF含量为20%、CNTs含量为15%时复合材料的力学性能和导电性能较理想。采用CF和CNTs同时增强PPS时,当CF添加16%、CNTs添加4%时,CNTs/CF/PPS复合材料性能较好。此外,对CF和CNTs增强机制进行初步讨论。  相似文献   

4.
利用碳纤维(CF)增强聚苯腈(PN)树脂制备一系列PN/CF复合材料,利用万能试验机和动态热机械分析仪(DMA),研究短CF含量、长度与偶联剂种类对PN树脂力学性能的影响。结果表明,采用苯基三乙氧基硅烷作为偶联剂时力学性能和热稳定性达到最佳水平,相较于未经偶联剂改性PN/CF复合材料的储能模量提高了22.2%,热失重5%温度(Td5%)提高了33.1%;随着CF掺杂量的增加,材料力学性能呈现先增大后减小趋势,在0.3%(质量分数,下同)时获得了最优异力学性能,相较于PN树脂,其弯曲强度提高了38.4%,弯曲模量提升了97.7%;CF长度为6 mm时材料的弯曲强度和储能模量优于CF长度为3 mm时的材料。  相似文献   

5.
《塑料科技》2017,(4):25-30
以高密度聚乙烯(HDPE)为基体、碳纳米管(CNTs)为导热填料,通过熔融共混法和溶液共混法制备了HDPE/CNTs导热复合材料;研究了CNTs添加量和尺寸对复合材料力学性能、热导率、维卡软化温度和熔体流动速率的影响,并对比了两种制备方法对复合材料力学性能和热导率的影响。结果表明:随着CNTs用量的增加,复合材料的拉伸强度、弯曲强度和热导率均明显提高;直径大的CNTs更有利于复合材料性能的提升;加入10%的CNTs后,复合材料的拉伸强度、弯曲强度和热导率分别提高了33.43%、36.31%和52.59%(测试温度60℃);采用熔融共混法制备的复合材料的性能提高更明显。  相似文献   

6.
采用人工加速老化试验方法研究了热氧老化对PBO纤维复合材料力学性能的影响。利用材料万能试验机研究了PBO纤维复合材料的拉伸、弯曲和剪切等静态力学性能随热氧老化时间的变化情况,结果表明,经过在60℃热氧老化不同时间后,PBO纤维复合材料的拉伸强度变化较小,弯曲强度和层间剪切强度出现了一定程度的下降,最大降幅分别为8.8%和11.7%,拉伸模量和弯曲模量增大。采用DMA研究了热氧老化时间对PBO纤维复合材料动态力学性能的影响,结果表明,热氧老化使得PBO纤维复合材料的耐热性提高,贮能模量下降,随着老化时间逐渐增加,E″逐渐向高温方向移动。  相似文献   

7.
采用熔融浸渍法制备了连续碳纤维(CF)增强聚醚醚酮(PEEK)复合材料预浸带,并层压成型制备复合材料层压板。研究了成型温度、成型压力、成型时间、纤维含量等因素对复合材料层压板力学性能的影响。结果表明,在成型温度为370℃、成型压力为12 MPa、成型时间为70 min、纤维含量为61%的工艺条件下,连续CF增强PEEK复合材料层压板的力学性能达到最优值,弯曲强度和弯曲弹性模量分别达到(1 750.76±49.13)MPa和(107.54±6.35)GPa,层间剪切强度达到(100.04±6.88)MPa,缺口冲击强度为(84.44±1.54)k J/m2。随着冷却速率的增大,复合材料层压板的弯曲性能和层间剪切强度下降,而缺口冲击强度提高。SEM分析表明,复合材料层压板的界面粘结良好。  相似文献   

8.
以高密度聚乙烯(PE-HD)为基体、碳纤维(CF)为增强材料,采用双辊塑炼工艺制备了PE-HD/CF复合材料,力学性能测试结果表明该复合材料的拉伸和弯曲性能随CF含量的增加而增大,但缺口冲击强度逐渐下降。在该复合材料基础上添加空心玻璃微珠(HGB)制得PE-HD/CF/HGB三元复合材料,力学性能测试结果表明当HGB用量为10份且CF用量为15份时,三元复合材料的拉伸强度、弯曲强度和缺口冲击强度均达到最大,分别为46.98 MPa,45.69 MPa和8.17 kJ/m2,较未加HGB的PE-HD/CF复合材料分别提高了7.19%,4.17%和10.4%。扫描电子显微镜结果表明,HGB主要通过其变形和破坏来吸收冲击能量,从而提高复合材料的韧性。  相似文献   

9.
研究了湿法缠绕成型的T700碳纤维/氰酸酯树脂复合材料NOL环及单向板力学性能。测试了树脂配方的粘度-温度特性,T700碳纤维/氰酸酯树脂复合材料NOL环的拉伸及剪切性能,采用SEM对NOL环拉伸试样破坏形貌进行了观察。测试了T700碳纤维/氰酸酯树脂单向板复合材料的常温拉伸性能、弯曲性能、层间剪切性能和高温弯曲性能。结果表明,树脂配方在25℃下的粘度为800 cps,可以直接在室温条件下用于复合材料湿法缠绕成型,并具有充分的使用期。NOL环的拉伸强度为2220 MPa,剪切强度为56. 8 MPa,树脂基体对碳纤维具有良好的浸润性,能够较好地发挥出碳纤维的高强度特性。T700碳纤维氰酸酯树脂单向板复合材料的高温力学性能优异,200℃下弯曲强度保留率高达60. 4%,250℃下弯曲强度保留率高达45. 0%。  相似文献   

10.
采用微型注塑机制备了聚醚醚酮/玻璃纤维/碳纳米管(PEEK/GF/CNTs)复合材料,对PEEK/GF/CNTs复合材料的力学性能、导热性能、摩擦性能进行了研究。结果表明:室温(25℃)下,GF的加入使PEEK材料的拉伸强度提高了43.37%;随着温度的升高,PEEK及其复合材料的拉伸强度逐渐下降;随着CNTs用量的增加,PEEK/GF/CNTs复合材料的拉伸强度呈先增大后减小的趋势;在1 000N的载荷下,PEEK/GF/CNTs复合材料的耐摩擦性能最佳;CNTs的加入提高了PEEK材料的耐热性能;当CNTs质量分数为8%时,PEEK/GF/CNTs复合材料拉伸强度为168.64 MPa,导热系数为0.416 2 W/(m·K),结晶度为16.18%,综合性能最佳。  相似文献   

11.
电子电气设备等产生电磁辐射污染会严重影响到人体健康,并干扰设备的正常运行,解决电磁污染的关键是使用电磁屏蔽材料。采用模压工艺制备了具有电磁屏蔽功能的环氧树脂/碳纤维(CF)/亚麻纤维复合材料。借助矢量网络分析仪、热重分析仪、万能试验机、扫描电子显微镜(SEM)等研究CF粉对复合材料的电磁屏蔽性能(EMI SE)、热稳定性和力学性能的影响。结果表明,复合材料的弯曲强度随着CF粉含量的增加而增加,并在其质量分数为30%时达到最大值,为102.5 MPa,与未加CF的材料相比较,提高了31.1%,此后进一步增加CF粉含量,复合材料的弯曲强度开始下降。SEM证实,复合材料力学性能的提高来源于CF与环氧树脂界面性能的改善。CF粉的加入提高了环氧树脂/亚麻纤维复合材料的热稳定性,热分解温度从206℃提高到268℃。同时复合材料的体积电阻率随着CF粉含量的增加而下降,从0.65Ω·cm降至0.132Ω·cm。在8.4~12.4 GHz电磁波范围内,环氧树脂/CF/亚麻纤维复合材料的EMI SE达到20 dB以上,基本满足商业要求。  相似文献   

12.
通过短切碳纤维(CF)与热塑性聚氨酯弹性体(TPU)共混改性制得一系列不同CF质量分数(含量)、不同方法处理CF的碳纤维/TPU复合材料。重点研究了不同CF质量分数和不同表面处理方法对碳纤维/TPU复合材料的微观形态、物理机械性能、热性能和动态力学性能的影响。研究结果表明:随着CF质量分数的提高,复合材料的杨氏模量和压缩模量逐渐提高,当CF质量分数为25%时,拉伸强度出现最大值。热性能和动态性能也均以CF质量分数为25%时最佳。各种表面处理中以胺基硅烷KH5501处理CF对CF/TPU复合材料的机械性能和热稳定性改善效果明显;而TCA-K44和浓硝酸氧化刻蚀CF/TPU复合材料则表现出较好的韧性和弹性。SEM分析结果表明,TPU与CF间具有很好的粘接。  相似文献   

13.
添加不同含量的苯氧树脂增韧剂和助剂,开发了一种自行车轮圈用耐高温环氧树脂体系。考察了树脂体系浇注体的力学性能及其复合材料层压板的干态和湿态动态力学性能、层间剪切性能和弯曲性能。研究结果表明:增韧剂含量为15%时,其浇注体的拉伸强度为79.6 MPa,断裂伸长率为3.25%,弯曲强度为148.5 MPa,压缩强度为170 MPa;其层压板层间剪切强度为86 MPa,弯曲强度为1 575 MPa,干态玻璃化转变温度为261℃,水浸35 d后玻璃化转变温度为233℃;在一定温度区间层压板干/湿态层间剪切强度及干态弯曲强度与温度呈现线性负相关关系。所制备的TR1219G/T700材料体系,可用于复合材料自行车轮圈的研发与生产。  相似文献   

14.
针对高密度聚乙烯(PE–HD)/碳纤维(CF)二元复合材料随CF含量的增加,拉伸强度和弯曲强度增大、冲击强度却逐渐下降的情况,在二元体系中添加纳米CaCO3制得PE–HD/CF/CaCO3三元复合材料,对比分析了两种复合材料的力学性能,并采用扫描电子显微镜对三元复合材料的冲击断面进行观察。结果表明,纳米CaCO3的加入使得三元复合材料的拉伸强度略有降低,但弯曲强度和冲击强度在一定范围内增大;当纳米CaCO3含量为10份时,复合材料的综合力学性能最佳。  相似文献   

15.
为了进一步提高玻璃纤维增强环氧复合材料(GFRE)的力学性能,本文将工业级多壁碳纳米管(MWCNTs)均匀分散在含分散剂B60T的环氧树脂(EP)中,制备了MWCNTs/GFRE复合材料。研究了MWCNTs官能团种类和含量对GFRE宏观和微观力学性能的影响,并对复合材料界面粘合性进行了分析。结果表明:官能化MWCNTs可以明显提高GFRE的力学性能和层间粘合强度,羟基化碳纳米管(MWCNTs-OH)对GFRE的力学性能和层间剪切强度提升最明显;与GFRE相比,当MWCNTs-OH用量为0.1wt%时,MWCNTs-OH/GFRE的拉伸强度和弯曲强度分别提高了51.9%和31.2%,拉伸模量和弯曲模量分别提高了9.1%和5.2%,层间剪切强度提高了23.9%;动态粘弹性研究表明,与GFRE相比,MWCNTs-OH/GFRE的初始模量提升了约10.1%,玻璃化温度提高约4.8℃;MWCNTs对MWCNTs/GFRE界面结合和耐温性的提高,与其官能团数量、种类及其与环氧分子的反应难易以及形成的化学键自由度有关。  相似文献   

16.
采用碳纳米管(CNTs)对S-157树脂基体进行改性,同时研究了不同分散工艺和CNTs质量分数(质量含量)对复合材料力学性能和烧蚀性能的影响。研究结果表明:使用CNTs对S-157酚醛树脂进行改性,采用球磨分散和超声分散相结合的分散工艺,可以明显提高CNTs/CBFTC/S-157PR复合材料的力学性能,但其烧蚀性能略有降低;当CNTs质量分数为0.5%时,CNTs/CBFTC/S-157PR的弯曲强度和压缩强度最大;当CNTs质量分数为1.5%时,CNTs/CBFTC/S-157PR的拉伸强度最大。  相似文献   

17.
针对石墨烯在复合材料增强增韧上的应用,对石墨烯进行了酸化处理,采用超声分散方法制备酸化石墨烯/环氧树脂(EP)浇注体,并在此基础上制备了酸化石墨烯/碳纤维(CF)/环氧树脂(EP)复合材料。分别利用红外光谱和透射电镜表征了酸化石墨烯表面结构和微观形貌,利用拉伸、弯曲、冲击等机械测试手段评价了酸化石墨烯改性EP和CF-EP的力学性能,并利用扫描电镜对复合材料拉伸断面形貌进行观察。试验结果表明:石墨烯酸化处理后,成功在表面引入了羟基、羧基等极性基团;酸化石墨烯可对EP和CF/EP进行有效增强增韧,当其添加量为0.2wt%时,EP拉伸强度和冲击强度分别提高了23.3%和109.8%,CF/EP拉伸强度、弯曲强度分别提高了6.0%和10.6%,当酸化石墨烯添加量为0.5wt%时,CF/EP复合材料层间剪切强度提高了7.4%。微观形貌分析表明,酸化石墨烯对CF/EP增强改性主要是通过对EP进行增强增韧,同时提高CF和EP之间的界面性能来实现的。  相似文献   

18.
碳纤维增强环氧改性氰酸酯树脂复合材料性能研究   总被引:1,自引:0,他引:1  
分别采用热重分析(TGA)法、动态力学分析(DMA)法研究了碳纤维增强环氧改性氰酸酯树脂(CE/EP/CF)复合材料的热稳定性、耐热性及动态热力学性能,研究了此种复合材料强力环(NOL环)的力学性能。结果表明,CE/EP/CF复合材料具有优良的耐热性和热稳定性,玻璃化转变温度为226.33℃,NOL环层间剪切强度为48.7MPa。扫描电子显微镜(SEM)分析表明,CF与CE/EP树脂间的界面粘接良好。  相似文献   

19.
采用电泳沉积法结合化学气相渗透技术制备碳纳米管二次增韧的连续碳纤维增韧碳化硅(CNTs-C/SiC)复合材料。通过改变热解碳(PyC)界面上电泳沉积CNTs的时间,控制C/SiC复合材料中CNTs的含量,通过测试拉伸强度和断裂功,研究了CNTs含量及热处理对复合材料力学性能的影响。结果表明:在C/SiC复合材料PyC界面层上电沉积CNTs,能够大幅提高材料的拉伸强度和韧性。电沉积CNTs时间为5、8和10min时,CNTs-C/SiC复合材料的拉伸强度和断裂功分别提高了10.7%、39.3%、45.2%和31.1%、35.9%、46.5%。对未电沉积、电沉积8和10min的CNTs-C/SiC复合材料进行1 800℃热处理,发现材料的拉伸强度分别提高了64.4%、39.4%和49.5%。  相似文献   

20.
采用浓硝酸和浓硫酸改性碳纳米管(CNTs),然后以环氧树脂(EP)为基体、碳纤维双层间隔织物(CFDSF)为增强体制备了EP/CFDSF/CNTs复合材料,研究了改性CNTs含量对EP/CNTs和EP/CFDSF/CNTs复合材料力学性能及电学性能的影响。结果表明,随改性CNTs含量增加,两种复合材料的弯曲强度和缺口冲击强度均先升高后降低,当改性CNTs的含量为2.5份时,两种复合材料的力学性能最好,EP/CFDSF/CNTs复合材料的弯曲强度和缺口冲击强度分别为145.18 MPa和18 kJ/m~2,分别较EP/CNTs复合材料提高了12.5%和18.4%。随改性CNTs含量增加,两种复合材料的体积电阻率降低,当达到渗滤阈值即改性CNTs的含量为2.5份后下降明显,EP/CNTs复合材料的体积电阻率为25.9Ω·cm,而EP/CFDSF/CNTs复合材料的体积电阻率为20.85Ω·cm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号