共查询到18条相似文献,搜索用时 86 毫秒
1.
针对单一信号源特征无法准确识别局部放电(PD)类型的问题,提出了一种基于改进BP神经网络(BPNN)和D-S证据的高压电机PD模式识别方法。对不同类型PD的脉冲相位信息、特高频信号和超声波信号进行采集,提取不同信号的特征向参数,再分别构造基于鲸鱼优化算法(WOA)改进的BPNN识别模型对PD类型识别,将3个识别模型的识别结果作为证据体采用D-S证据组合规则进行融合,最后对融合结果进行决策。研究结果表明:基于3类单一信号源独立识别各类PD类型的准确度存在差异性和不确定性,识别率分别为83.3%、90.0%、83.3%,但3类信号源的共性和差异性可以融合互补,有各自优势,可以解决故障诊断中的不确定性问题。在此基础上,基于D-S证据融合的高压电机PD类型的整体识别率提升至96.6%,实现了3种信号源的优势互补,与单一模型对比,所提方法可以稳定、准确地识别PD模式,具有更高准确率和可靠性,验证了所提方法的有效性与正确性。 相似文献
2.
基于多特征信息融合技术的局部放电模式识别研究 总被引:1,自引:0,他引:1
针对单一特征信息分析模式独立辨识不能有效、可靠地判断出局部放电(PD)类型致使识别"误诊"的问题,以及为了最大限度地利用特高频(UHF)传感器所获取的丰富绝缘状态信息,利用放电时间、放电相位分布及UHF能量与放电量相关性等3类特征信息的共性和差异性进行融合互补,提出一种基于多特征信息融合的PD模式识别方法。通过在一套三相分箱式真实GIS(ZF-10-126)试验平台上实测所得的PD试验信息进行分析其结果表明:3类特征信息独立辨识各类缺陷的准确度存在较大差异性和不确定性,但有着各自优势。而采用D-S证据理论进行3类特征信息融合PD模式识别技术,可对3类特征信息独立识别法各自存在的不足进行互补,具有更高更准确的辨识率和可靠性。至此验证了所提方法的有效性与正确性。 相似文献
3.
气体绝缘组合电器(GIS)局部放电检测使用的传统特高频(ultra-high frequency,UHF)法具有抗偶发干扰能力差、容易误检等问题,针对局部放电的光信号进行检测是最近的研究热点,然而新式光检测法具有检测死角多、容易漏检的问题。为此,本文提出基于Goubau天线和硅光电倍增管联合的GIS光电局部放电检测方法,并对GIS内部4种典型绝缘缺陷产生的局部放电进行光电同步测量。提出基于多层感知机和Dempster-Shafer(D-S)证据理论的GIS局部放电光电联合检测模式识别方法,对UHF法与光测法联合采集得到的局部放电相位分析图谱统计特征参量进行信息融合与判断决策。结果表明:该方法能较好地弥补利用单种测量结果进行局部放电模式识别不准确的问题,使用D-S证据理论对光电联合测量结果进行模式识别的准确率高于单一测量结果的准确率。 相似文献
4.
5.
本文介绍了BP人工神经网络在局部放电模式识别中的应用,结合实际现场情况提出了一部局部放电特性的提取方法,并在此方法基础上开发出局部放电模式识别系统,然后利用此系统对空气火花放电和油中火花放进行了模式识别实验,实现结果证明了这种放电特性提取方法在局部放电模式识别应用中的可行性。 相似文献
6.
7.
局部放电(PD)是配电设备绝缘故障早期的主要表现形式,放电类型的模式识别对于设备绝缘性能的判定具有重要意义。考虑到极限学习机(ELM)法结构简单、训练速度快,但初始参数选取随机性大,算法稳定性不够的特点,提出一种基于融合ELM算法的PD模式识别方法,综合考虑不同特征判断准确率的差异,采用自适应权值分配对子分类器输出结果实现决策级融合。文中设计了4种放电物理模型来模拟典型的设备绝缘缺陷,采用高频电流法对PD信号波形和相位-幅值谱图(PRPD)进行采集,获得足够样本的实验数据,提取时频域及统计特征值进行分类。结果表明融合ELM算法在保证训练速度的同时,在识别正确率和稳定性上均优于传统ELM算法和反向传播(BP)神经网络。 相似文献
8.
9.
根据小波理论,建立了表征局部放电(PD)脉冲信号的三维时频谱图;综合反映了局放脉冲信号的3个基本特征:时间分量、频率分量和放电能量的分布。提取放电特征,并构成识别特征量,采用反向传播算法(BP)神经网络用于局部放电信号类型的模式识别。实验结果表明,本方法可以有效的区分局部放电的类型。 相似文献
10.
11.
局部放电与电力设备的绝缘状态息息相关,准确识别局部放电类型对于保障电网运行具有重要意义。文中提出一种基于深度学习和多模型融合的局部放电模式识别方法。首先,设计并搭建开关柜内4类典型局部放电缺陷模型,采集局部放电相位分布(phase resolved partial discharge,PRPD)图谱并建立样本集;其次,搭建基于迁移学习的深度残差网络,对局部放电缺陷进行识别;最后,利用Sugeno模糊积分将深度残差网络(deep residual net ̄work,DRN)模型与传统识别模型进行融合。实验结果表明:迁移学习模型相比于无迁移学习模型有着更好的更新能力和泛化性能;融合模型与单一模型相比具有更高的识别准确率。所提方法能够准确识别局部放电缺陷类型,对于电力设备的运维检修具有一定的参考价值。 相似文献
12.
13.
为解决变压器局部放电故障所带来的安全隐患,提出了一种基于逆拉冬变换(Inverse Radon transform,Iradon)-卷积神经网络(Convolutional Neural Networks,CNN)的变压器局部放电信号图像识别方法。针对三种故障进行了局部放电实验,首先通过共振稀疏分解对局部放电信号进行分解,获取低共振分量,然后将其转换成Iradon图像,最后利用CNN自适应地提取Iradon图像的特征信息。结果表明,该方法能够准确提取信号特征,具有强大的数据处理和识别功能,并为变压器局部放电状态的识别提供了丰富的信息,提高了学习效果和识别精度。 相似文献
14.
基于多维信息源融合的局部放电故障识别方法对提高故障识别的准确性和容错性具有重要意义。文中以开关柜中的典型局部放电类型为识别对象,设置4种典型的局部放电模型(电晕放电、沿面放电、悬浮放电和气隙放电),利用超声波(Ultra)法、甚-特高频(V-UHF)法以及脉冲电流法(PCM)采集不同放电类型产生的局放信号。首先利用深度卷积神经网络(CNN)算法对不同传感器测量数据进行训练,之后利用Dempster-Shafer(D-S)证据理论对多维信息源识别结果进行融合,并作出最终决策。结果表明,相比于基于单一信息源的故障识别模式,基于多维信息源的故障识别模式准确率更高,且当多维信息源中某一信息源出现误判时仍能正确识别放电类型,对信息源的容错性更好,识别效果良好。 相似文献
15.
光学遥感图像的多目标检测与识别一直是图像处理与分析领域的热点研究问题。针对多特征单一分类器决策级融合不能很好的利用特征与分类器的适应性,导致识别的准确率很难进一步提高的问题,提出了基于D-S证据理论的多特征多分类器决策级融合策略。首先提取了两种简单且具有平移、缩放不变性的特征;其次分别引入3种适应性较好的分类器进行分类;最后设计了两级的D-S证据理论的融合方案,并且在置信度函数计算的过程中引入表征分类器性能的混淆矩阵。该算法有效地解决了分类器输出的不确定性问题,进一步提高了光学遥感图像多目标分类识别的准确性。测试表明,对4种目标的识别率达到97.22%,验证了算法的有效性。 相似文献
16.
在局部放电信号抗干扰方面,考察了几种较新的阈值除噪方法,提出了将二进小波变换分别与单抽头最小均方LMS(Lease Mear Square)算法滤波器和基于Birge-Massart策略的小波去噪相结合的变压器局部放电信号抗干扰方法.同时针对局部放电信号的模式识别问题,首先分别根据模糊概率理论和波形匹配理论,针对时域单个特高频UHF(Ultra High Frequency)脉冲信号,提出了2种电力变压器特高频局部放电信号的模式识别方法.基于时域单个UHF脉冲信号的信息,提出了用于神经网络输入的8个特征量,分别利用BP网络、Elman回归神经网络和PNN概率神经网络对4种典型的变压器局部放电信号进行了模式识别的尝试,取得了较好的识别效果. 相似文献
17.
18.
基于卷积神经网络的高压电缆局部放电模式识别 总被引:1,自引:0,他引:1
由高压电缆不同类型缺陷诱发的局部放电(PD)的识别难度较大,尤其是某些相似度较高的电缆绝缘缺陷类型难以区分。提出了一种基于卷积神经网络(CNN)的高压电缆PD模式识别方法,研究了不同网络层数、不同激活函数以及不同池化方式对识别效果的影响,并与传统的支持向量机(SVM)和反向传播神经网络(BPNN)算法进行了对比。结果表明,相比SVM和BPNN,CNN的总体识别精度分别提高了3.71%和4.06%,且能较好地识别具有高相似度的电缆缺陷类型。 相似文献