首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
本文以视觉传感的新视觉传感硬件、处理技术和应用场景为主线,通过综合国内外文献和相关报道来梳理该领域在成像技术和数据处理方面的主要进展。从激光扫描成像、大动态范围光学成像技术、偏振成像与传感技术和海洋声学层析成像等研究方向,重点论述视觉传感领域的发展现状、前沿动态、热点问题和趋势。基于激光扫描的3维建模技术虽然取得了一些进展,但仍面临居多挑战。随着硬件设备和数据处理技术的发展,未来激光扫描系统将在众多民用领域得到广泛应用,满足不同的探测和建模任务;大动态范围光学成像相关技术已逐步应用于红外成像、光谱成像、偏振成像、超声成像和单光子成像等领域,将为多维信息获取、智能处理以及数据挖掘等提供有力支撑;充分挖掘偏振成像的应用潜能,与其他先进成像传感技术相结合,实现更优性能,对各个尺度下的成像场景都具有重要的应用价值;海洋声学层析成像需要与其他方法相结合,发展基于分布式水下传感网络、卫星观测、海底电缆、人工与自然噪声机会声源等联合观测的低成本、长期观测网络。对国内外视觉传感领域进展情况进行梳理、总结,有助于发现该领域的发展趋势以及明确下一步的研究方向。  相似文献   

2.
单目视觉定位方法研究综述   总被引:1,自引:0,他引:1  
根据单目视觉定位所用图像帧数不同把定位方法分为基于单帧图像的定位和基于双帧或多帧图像的定位两类。单帧图像定位常利用已知的点特征、直线特征或曲线特征与其在图像上的投影关系进行定位,其中用点特征和直线特征的定位方法简单有效而应用较多;基于双帧或多帧图像的定位方法因其操作复杂、精度不高而研究的还较少。通过对各方法的介绍和评述,为单目视觉定位问题的研究提供参考。  相似文献   

3.
机器视觉技术对改善煤矿安全监测手段、提高装备自动化水平具有积极意义。详细阐述了当前煤矿智能化建设过程中基于机器视觉的不同场景和系统下的设备信息状态感知原理,综述了机器视觉感知技术在煤矿安全监测、拣选识别、煤岩识别、定位导航、运输检测、位姿检测和信息测量等方面的实践应用;分析指出未来煤矿机器视觉感知技术应深入挖掘采掘工作面机器视觉场景理解需求,构建生产全视场监视检测体系,提升多时空多维度多变量集成监测效果,改善视频自主监视告警能力,增强视觉引导能力,并形成地面生产管理运行系统的视觉资料统一化管理方式等,重点研究综采装备(群)姿态同时空测量、采掘环境动态变化感知、生产全视场监测与自主告警、煤矿机器人视觉引导控制等技术;指出煤矿机器视觉感知技术在防爆或本安型智能视觉传感器研发、高效视觉测量与分析、检测识别测量精度提升、图像高质量标注方面仍存在挑战,通过开发具有边缘计算能力的视觉传感器,构建井上下视觉分布式测量方案,实现各类复杂环境下开采信息准确识别与测量,可有效提高机器视觉感知技术在煤炭行业的更深层次融合和应用。  相似文献   

4.
移动机器人编队视觉定位方法研究   总被引:1,自引:1,他引:0  
该文提出一种基于视觉的移动机器人编队定位方法。该方法采用基于纹理的图象对机器人进行标识,然后使用纹理中的特征点对机器人的位置和姿态进行估计,使用最小二乘算法使估计结果误差最小。实验证明该方法能够有效地对编队的移动机器人定位,同时对环境干扰具有鲁棒性。  相似文献   

5.
一种用于单摄像机视觉传感技术的新模型   总被引:1,自引:1,他引:0  
提出了一种用于单摄像机视觉传感测量技术的新模型,该模型采用参数法可直接求解视觉传感测量过程中控制点的三维坐标,进而求出被测点的三维坐标.文中简要介绍了利用单摄像机测量目标三维坐标的工作原理与系统结构,给出了求解新模型的详细计算过程,并通过大量的实验来验证了新模型的正确性与有效性.  相似文献   

6.
综述了单目相机重定位的研究现状和最新进展,介绍了该领域的关键方法.不同于现有对重定位方法进行纵向分类的方式,本文提出了一种从场景模型构建、环境信息匹配、相机位姿解算3个方面进行展开的直观、统一的横向视觉定位结构体系,在该体系中基于深度学习以及基于几何结构的视觉重定位方法首次被统一地对比阐述.基于深入的性能分析讨论和可视化结果,指出了目前该领域导致性能瓶颈的因素和仍然存在的挑战,并对当前性能优越的相机位姿估计方法进行了分析和总结.最后展望了未来相机重定位估计方法的发展动向.  相似文献   

7.
移动机器人视觉里程计综述   总被引:10,自引:5,他引:10  
定位是移动机器人导航的重要组成部分.在定位问题中,视觉发挥了越来越重要的作用.本文首先给出了视觉定位的数学描述,然后按照数据关联方式的不同介绍了视觉里程计(Visual odometry,VO)所使用的较为代表性方法,讨论了提高视觉里程计鲁棒性的方法.此外,本文讨论了语义分析在视觉定位中作用以及如何使用深度学习神经网络进行视觉定位的问题.最后,本文简述了视觉定位目前存在的问题和未来的发展方向.  相似文献   

8.
机器人抓取目标时,准确完成任务的前提是可以精准检测到目标位置,当距离目标较远时,以信号传感为基础的定位精度和稳定性会受到影响。为解决上述问题,提出基于视觉传感器的机器人抓取目标精确定位方法。利用视觉传感器获取目标图像,并标定目标位姿。采取直线段检测方法提取目标位姿特征,将提取的特征输入到改进粒子群算法的支持向量机回归模型中,输出定位结果。利用回归误差补偿模型对定位结果补偿,完成机器人抓取目标精确定位。实验结果显示,利用视觉传感器后,机器人抓取目标的定位时间为35s、与实际位置的接近程度高于81%、置信度高于92%,由此可知机器人抓取视觉传感目标定位效果较好。  相似文献   

9.
夜视战场环境视觉传感信息的实时获取是跟踪夜视战场图像处理分析的前提,针对夜视战场环境的复杂特征,设计了夜视战场环境视觉传感信息采集系统,分析了系统的总体结构,系统硬件主要包括视觉传感器、传感器控制卡和扩展卡、图像采集与存储以及信号调理电路,给出了系统采集节点的程序设计流程以及传感信息采集的具体程序代码实现过程;实验结果说明,所设计系统可有效采集到夜间军事战场中的传感信息,并且具有较高的采集精度。  相似文献   

10.
11.
图像压缩是遥感图像处理的重要研究领域,现有的压缩方法要么丢失重要的细节信息,无法满足实际的应用需要,要么压缩率过低,难以达到实时处理的要求。将视觉注意机制引入到遥感图像压缩中,对不同的显著性区域采用不同的压缩率,这样不仅可以对整个遥感图像达到一个高的压缩率,而且还可以保持重要区域的高分辨率,实现了可变分辨率的图像压缩。实验结果表明在前几个显著性区域中,该方法得到的图像压缩性能指标优于传统压缩方法得到的性能指标。  相似文献   

12.
显著性目标检测是遥感图像处理的重要研究领域,传统的方法通过逐个像素点的计算来实现目标检测,难以满足遥感图像大面积实时处理的要求。将视觉注意机制应用到遥感图像的显著性目标检测中,在训练阶段,将所有的目标融合成目标类,所有的背景融合成背景类,目标类的显著性均值与背景类的显著性均值的比值得到一个权重向量;在检测阶段,所有的特征图乘以权重向量得到自顶向下的显著性图;自顶向下和自底向上的显著性图融合生成全局显著性图。实验结果表明当目标和背景不是总成对出现时,该方法的检测结果优于Navalpakkam模型和Frintrop模型的检测结果。  相似文献   

13.
结合温度场数据采集的实际开发例子,介绍了用VisualBasic和MATCOM开发数据采集分析系统,该系统结合了VB和MATCOM的优点,具有系统开发简单,界面友好,数据分析功能强大,能够做到实时的复杂分析,而且有利于实现数据挖掘等特点。  相似文献   

14.
In compressive sensing (CS) based inverse synthetic aperture radar (ISAR) imaging approaches, the quality of final image significantly depends on the number of measurements and the noise level. In this paper, we propose an improved version of CSbased method for inverse synthetic aperture radar (ISAR) imaging. Different from the traditional l 1 norm based CS ISAR imaging method, our method explores the use of Gini index to measure the sparsity of ISAR images to improve the imaging quality. Instead of simultaneous perturbation stochastic approximation (SPSA), we use weighted l 1 norm as the surrogate functional and successfully develop an iteratively re-weighted algorithm to reconstruct ISAR images from compressed echo samples. Experimental results show that our approach significantly reduces the number of measurements needed for exact reconstruction and effectively suppresses the noise. Both the peak sidelobe ratio (PSLR) and the reconstruction relative error (RE) indicate that the proposed method outperforms the l 1 norm based method.  相似文献   

15.
16.
建立契合遥感数据内在特征的智能信息分析模型与方法,是解决遥感大数据时代信息智能提取的关键所在。从普适性的大范围水体信息遥感智能采集的需求出发,构建一种基于视觉选择性注意机制与AdaBoost算法的水体信息遥感智能提取方法。首先通过对遥感多特征指数的RGB配色方案的优化设计,实现水体信息图像特征的增强和可视化表达。然后在HSV颜色空间中,利用色差距离图像的关键节点信息构造分类特征集,并采用AdaBoost算法构建水体识别分类器,据此从图像色彩聚类结果中自动识别出水体所属类别,实现水体信息的智能提取。对比实验结果表明,该方法的水体信息提取结果在漏分率(LR)和复合分类精度(CCA)上都有明显提高;同时,该方法能有效减少对高质量训练样本的依赖性,对于丰水期泥沙含量较高水体以及洪灾导致的淹没区等临时性水域也具有较好的识别性能。  相似文献   

17.
In spaceborne synthetic aperture radar,undersampling at the rate of the pulse repetition frequency causes azimuth ambiguity,which induces ghost into the images.This paper introduces compressed sensing for azimuth ambiguity suppression and presents two novel methods from the perspectives of system design and image formation,known as azimuth random sampling and ambiguity separation,respectively.The first method makes the imaging results for the ambiguity zones as disperse as possible while ensuring that the imaging results for the main scene are affected as little as possible.The second method separates the ambiguity signals from the echoes and achieves imaging results without the ambiguity effect.Simulation results show that the two methods can reduce the ambiguity levels by about 16 dB and 99.37%,respectively.  相似文献   

18.
合成孔径雷达及其干涉技术研究进展   总被引:4,自引:0,他引:4  
合成孔径雷达(Synthetic aperturer adar,SAR)能够在全天候、全天时条件下对地面进行大范围测绘,是现代民用遥感和军事侦察中的重要手段。本文回顾了SAR及干涉合成孔径雷达(InSAR)技术的历史,叙述了SAR由非聚焦到完全聚焦,由光学处理到全数字式处理,由二维测绘到干涉三维测绘的发展历程。通过例举典型系统,介绍了国外机载、空载SAR和InSAR技术的现状,并对我国近年来在该领域取得的进展作了简要介绍。最后,本文给出对SIR—C/X—SAR采集的航天飞机SAR数据处理所得到的成像结果。  相似文献   

19.
合成孔径与实孔径雷达谱域成像算法对比分析   总被引:1,自引:0,他引:1  
讨论了合成孔径雷达(Synthetic aperture radar,SAR)和实孔径雷达(Real aperture radar,RAR)一维扫描方式下的谱域成像实现问题.文中从SAR和RAR扫描下的波数域波散关系入手,分析了这两种扫描方式下的谱域填充区域和成像分辨率,指出了二者的异同,导出了相应的成像算法.单目标和组合目标的雷达成像仿真实验验证了两种扫描方式下成像算法的有效性和理论分析结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号