首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
知识图谱表示学习旨在通过学习的方法将知识图谱中的实体和关系映射到一个连续的低维向量空间而获得其向量表示.已有的知识图谱表示学习方法大多仅从三元组角度考虑实体间的单步关系,未能有效利用多步关系路径及其实体描述等重要信息,从而影响性能.针对上述问题,提出了一种融合关系路径与实体描述的知识图谱表示学习模型.首先,对知识图谱中的多步关系路径进行联合表示,将路径上的所有关系和实体相加,得到关系路径信息的表示;其次,使用BERT(bidirectional encoder representations from transformers)模型对实体描述信息进行编码,得到相对应的语义表示;最后,对知识图谱中的三元组表示、实体描述的语义表示以及关系路径的表示进行融合训练,得到融合向量表示.在FB15K,WN18,FB15K-237,WN18RR数据集上,对提出的模型和基准模型进行链接预测和三元组分类任务,实验结果表明,与现有的基准模型相比,该模型在2项任务中均具有更高的准确性,证明了方法的有效性和优越性.  相似文献   

2.
知识图谱的嵌入式表示方法以基于翻译的TransE最为经典,但在处理复杂关系时存在局限;使用欧氏距离作为得分函数中的度量,每个特征维度以相同的权重参与计算,准确性会受到无关维度的影响,灵活性不高。因此,针对这两个缺陷,提出一种自适应的知识图谱嵌入式表示方法TransAD。利用自适应度量方法更换度量函数,在得分函数中引入对角权重矩阵,为每一个特征维分别赋予权重,增加模型的表示能力。同时受TransD方法的启发,将实体与关系通过动态映射矩阵建立空间投影模型,来增强模型对复杂关系的处理能力,最后将两种优化集成在一个模型中。实验结果表明,新方法TransAD优于Trans(E,H,R,D),在链路预测和三元组分类任务的各项指标上均有提升,有一定的先进性。  相似文献   

3.
知识图谱表示学习将实体和关系映射到一个连续的低维空间.传统学习方法是从结构化的三元组学习知识表示,忽略了三元组之外与实体相关的丰富多源信息.针对该问题,提出一种将实体概念描述和图像特征与事实三元组相结合的知识图谱表示学习模型DIRL.首先,利用BERT模型进行实体概念描述的语义表示;其次,使用CNN编码器对图像总体特征进行提取,然后通过基于注意力的方法表示图像特征;最后,将基于概念描述的表示和基于图像特征的表示与翻译模型TransR结合起来进行知识图谱表示学习.通过实验验证,DIRL模型优于现有方法,提高了多源信息知识图谱表示的有效性.  相似文献   

4.
李军怀    武允文    王怀军    李志超    徐江 《智能系统学报》2023,18(1):153-161
知识图谱表示学习方法是将知识图谱中的实体和关系通过特定规则表示成一个多维向量的过程。现有表示学习方法多用于解决单跳知识图谱问答任务,其多跳推理能力无法满足实际需求,为提升多跳推理能力,提出一种融合实体描述与路径信息的知识图谱表示学习模型。首先通过预训练语言模型RoBERTa得到融合实体描述的实体、关系表示学习向量;其次利用OPTransE将知识图谱转化成融入有序关系路径信息的向量。最后构建总能量函数,将针对实体描述和路径信息的向量进行融合。通过实验分析与对比该模型在链路预测任务上与主流知识图谱表示学习模型的性能,验证了该模型的可行性与有效性。  相似文献   

5.
一种类比知识表示与逻辑描述   总被引:3,自引:0,他引:3  
罗玉龙  李波 《计算机学报》1995,18(12):893-900
本文叙述了一个以情境为单位基于情境间的整体部分关系的类比知识表示系统,给出了描述这种知识结构的内涵命题逻辑的语法,语义和公理系统,用实例说明了情境的联接不是逻辑与关系。  相似文献   

6.
知识表示学习旨在将知识图谱中的实体和关系表示成低维稠密实值向量,能有效缓解知识图谱的数据稀疏性和显著提升计算效率。然而,现有大多数知识表示学习方法仅将实体视为三元组的一个组成部分,没有考虑实体自身具有的特质,如实体相似性。为了加强嵌入向量的语义表达,提出基于实体相似性的表示学习方法SimE。该方法首先利用实体的结构邻域度量实体的相似性,再将实体的相似性和拉普拉斯特征映射结合作为基于三元组事实的表示学习方法的约束,形成联合表示。实验结果表明,该方法在链接预测和三元组分类等任务上与目前最好的方法性能接近。  相似文献   

7.
曹伟 《计算机仿真》2010,27(3):302-305
针对知识库是教学系统的核心,是实现系统智能化的关键。为了提高网络教学系统的决策和诊断能力,满足自适应学习的需要,设计了一个基于层次结构的语义网络和产生式的二级知识表示模型,提出了广度优先的知识点剪枝算法和深度优先的知识点遍历算法,对所学习知识点进行选取及对相应的知识网络遍历,并通过采用知识点学习的智能导航算法仿真学生在系统中自适应学习的全过程。实验结果表明,知识模型的设计有助于实现网络教学资源动态组织和教学策略的动态调整,能够更好地为学生提供个性化的学习参考需要,为系统决策分析提供参考依据。  相似文献   

8.
《软件工程师》2020,(1):1-6
在知识图谱(KnowledgeGraph)中,知识表示方法旨在通过一种低维稠密的向量表示方法来高效地挖掘不同实体、关系之间复杂语义关系,在知识问答、信息检索等领域有着重要意义。然而,现有的绝大多数的知识表示方法忽略了时间因素,无法表示应用中随时间变化的动态知识。针对该问题,本文提出一种基于实体时间敏感度的知识表示方法。该方法将时间信息以不同程度融入不同类型的实体向量表示中,然后进行实体和关系之间语义挖掘。实验结果表明,这种基于实体时间敏感度的表示方法能够明显提高知识图谱的时态知识补全和预测任务性能。  相似文献   

9.
针对传统电机故障诊断专家系统中知识表示方法的不足,提出一种基于描述逻辑的电机故障诊断领域知识描述方法,并在此基础上对所构建的电机故障知识库进行了逻辑检错推理.通过对电机故障诊断领域知识进行表示和推理,可以有效地表示电机故障知识之间的关系,检测知识逻辑体系错误.在实验过程中,利用本体编辑工具Protégé采用OWL语言对其进行了实现,并通过TABLEAU算法实现了逻辑检错推理.  相似文献   

10.
在知识图谱中,实体的文本描述信息、实体的层次类型信息和图的拓扑结构信息中隐藏着丰富的内容,它们可以形成对原始三元组的有效补充,帮助提高知识图谱各种任务的效果.为了充分利用这些多源异质信息,首先通过一维卷积神经网络嵌入文本描述信息,然后根据实体的层次类型信息构建投影矩阵,将三元组中的实体向量和实体的描述向量映射到特定的关...  相似文献   

11.
知识图谱在很多人工智能领域发挥着越来越重要的作用。知识图谱表示学习旨在将三元组中的实体和关系映射到低维稠密的向量空间。TransE、TransH和TransR等基于翻译操作的表示学习方法,只考虑了知识图谱的三元组信息孤立的学习表示,未能有效利用实体描述、实体类型等重要信息,从而不能很好地处理一对多、多对多等复杂关系。针对这些问题,该文提出了一种融合实体描述及类型的知识图谱表示学习方法。首先,利用Doc2Vec模型得到全部实体描述信息的嵌入;其次,对实体的层次类型信息进行表示,得到类型的映射矩阵,结合Trans模型的三元组嵌入,得到实体类型信息的表示;最后,对三元组嵌入、实体描述嵌入及实体类型嵌入进行连接操作,得到最终实体嵌入的表示,通过优化损失函数训练模型,在真实数据集上分别通过链接预测和三元组分类两个评测任务进行效果评估,实验结果表明新方法优于TransE、TransR、DKRL、SimplE等主流模型。  相似文献   

12.
自动化实体描述生成有助于进一步提升知识图谱的应用价值,而流畅度高是实体描述文本的重要质量指标之一。该文提出使用知识库上多跳的事实来进行实体描述生成,从而贴近人工编撰的实体描述的行文风格,提升实体描述的流畅度。该文使用编码器—解码器框架,提出了一个端到端的神经网络模型,可以编码多跳的事实,并在解码器中使用关注机制对多跳事实进行表示。该文的实验结果表明,与基线模型相比,引入多跳事实后模型的BLEU-2和ROUGE-L等自动化指标分别提升约8.9个百分点和7.3个百分点。  相似文献   

13.
赵畅  李慧颖 《中文信息学报》2019,33(11):125-133
面向知识库问答的实体链接是指将自然语言问句中实体指称链接到知识库中实体的方法。目前主要面临两个问题: 第一是自然语言问句短,实体指称上下文不充分;第二是结构化知识库中实体的文本描述信息少。因此,该文提出了分别利用候选实体的类别、关系和邻近实体作为候选实体表示的方法,弥补知识库实体描述信息不足的问题。同时,通过语料训练得到问句指称的相似实体指称作为其背景知识。最后,结合实体流行度,共同作为实体消歧的特征。实验结果表明,上述提到所有特征的线性组合在数据集上高于单个特征的结果,表现最佳。  相似文献   

14.
融合实体知识描述的实体联合消歧方法   总被引:1,自引:0,他引:1  
实体消歧(entity disambiguation)是指将文档中识别出的实体指称(entity mention)链向其在特定知识库中相应条目的过程。该文结合主流的基于深度学习的实体消歧方法并融合实体知识描述展开了实验性研究。实验结果表明,融合实体知识描述的实体消歧方法在公开数据集上取得了与已有最好算法相当的F1性能。  相似文献   

15.
陈文杰 《计算机工程》2021,47(1):87-93,100
基于翻译的表示学习模型TransE被提出后,研究者提出一系列模型对其进行改进和补充,如TransH、TransG、TransR等。然而,这类模型往往孤立学习三元组信息,忽略了实体和关系相关的描述文本和类别信息。基于主题特征构建TransATopic模型,在学习三元组的同时融合关系中的描述文本信息,以增强知识图谱的表示效果。采用基于主题模型和变分自编器的关系向量构建方法,根据关系上的主题分布信息将同一关系表示为不同的实值向量,同时将损失函数中的距离度量由欧式距离改进为马氏距离,从而实现向量不同维权重的自适应赋值。实验结果表明,在应用于链路预测和三元组分类等任务时,TransATopic模型的MeanRank、HITS@5和HITS@10指标较TransE模型均有显著改进。  相似文献   

16.
一种可用于基于内容智能检索的知识表示方式   总被引:2,自引:0,他引:2  
在基于内容的智能检索中,多媒体信息的知识表示方式是应该首先解决的关键问题之一。文章总结分析了基于内容的智能检索中现有的一些知识表示模型,在此基础上提出了一种新的可用于基于内容的智能检索的知识表示方式,为今后的研究提供了一些新的思路和方法。  相似文献   

17.
知识图谱表示学习通过将实体和关系嵌入连续低维的语义空间中,获取实体和关系的语义关联信息.设计一种融合实体类别信息的类别增强知识图谱表示学习(CEKGRL)模型,构建基于结构与基于类别的实体表示,通过注意力机制捕获实体类别和三元组关系之间的潜在相关性,结合不同实体类别对于某种特定关系的重要程度及实体类别信息进行知识表示学...  相似文献   

18.
智能教学系统中知识表示模型的研究与设计   总被引:1,自引:0,他引:1  
研究了智能教学系统功能与结构。分析了知识库模型在智能教学系统中的重要地位;通过对知识库中的教学内容与教学规则两类知识的分析和对超媒体知识表示的研究,构建了一个基于层次结构的超媒体网络模型,并在知识网络图中节点里嵌入教学规则,以实现教学内容的动态组织、呈现和教学过程中的自适应导航。该模型为教学系统的决策与分析提供了智能的辅助手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号