共查询到20条相似文献,搜索用时 107 毫秒
1.
提出一种新的非线性保边界平滑算法,通过对图像每个像素点的某个邻域内所有颜色相似的像素简单平均,来对图像进行平滑处理。该算法不仅能够进行保边界平滑,并且具有非常高的运算效率。应用这种平滑算法可以对图像进行快速保边界多尺度分解。运用多尺度分解实现了图像的增强、抽象化、对比度调整的效果。 相似文献
2.
目的 针对图像融合中存在的目标信息减弱、背景细节不清晰、边缘模糊和融合效率低等不足,为了充分利用源图像的有用特征,将双尺度分解与基于视觉显著性的融合权重的思想融合在一起,提出了一种基于显著性分析和空间一致性的双尺度图像融合方法。方法 利用均值滤波器对源图像进行双尺度分解,先后得到源图像的基层图像信息和细节层图像信息;对基层图像基于加权平均规则融合,对细节层图像先基于显著性分析得到初始权重图,再利用引导滤波优化得到的最终权重图指导加权;通过双尺度重建得到融合图像。结果 根据传统方法与深度学习的不同特点,在TNO等公开数据集上从主观和客观两方面对所提方法进行评价。从主观分析来看,本文方法可以有效提取和融合源图像中的重要信息,得到融合质量高、视觉效果自然清晰的图像。从客观评价来看,实验验证了本文方法在提升融合效果上的有效性。与各种融合结果进行量化比较,在平均梯度、边缘强度、空间频率、特征互信息和交叉熵上的平均精度均为最优;与深度学习方法相比,熵、平均梯度、边缘强度、空间频率、特征互信息和交叉熵等指标均值分别提升了6.87%、91.28%、91.45%、85.10%、0.18%和45.45%。结论 实验结果表明,所提方法不仅在目标、背景细节和边缘等信息的增强效果显著,而且能快速有效地利用源图像的有用特征。 相似文献
3.
4.
针对水下和低光图像存在的对比度低和颜色失真等情况,提出一种面向水下和低光图像的复原及增强方法.预处理操作,实现图像的复原;采用改进后的直方图均衡化方法,提高色彩的饱和度和图像的清晰度;运用卷积神经网络结合非二次采样轮廓变换(NSCT)技术,解决曝光问题,避免图像色彩退化和边缘细节减弱的发生.实验结果表明,该方法增强了图... 相似文献
5.
为了有效提取人脸图像的全局和局部特征以提高人脸识别的性能,提出一种基于多尺度图像局部结构分解的人脸特征提取方法。该方法首先通过多尺度分析构建人脸图像金字塔,然后对于金字塔中每一层的图像应用脊回归度量图像局部窗口内中心宏像素与其近邻宏像素之间的结构关系从而刻画出图像的局部结构信息,再根据得到的局部结构信息将图像分解为若干个子图像,最后将这些子图像均匀下采样和归一化后连接在一起形成一个特征向量。实验结果表明,与Gabor、LBP和IDLS等方法相比,该方法具有更好的识别性能。 相似文献
6.
针对关键点检测过程中遥感图像会因为局部结构变形发生误检测的问题,提出一种鲁棒的关键点检测新方法。该方法首先基于映射策略和提升结构实现非下采样多尺度滤波器,用于获得平滑图像;然后根据图像尺度空间理论和尺度不变特征变换生成高斯差分尺度空间,并利用有限差分计算尺度空间采样点局部极值,子像元插值和Hessian矩阵删除不稳定极值点;最后用梯度分布直方图描述关键点。在仿真实验平台上,与现阶段方法的关键点计算时间和图像匹配性能做比较分析,实验结果表明,改进的方法有较低的计算时间复杂度,具有较好的鲁棒稳定性。 相似文献
7.
红外与可见光图像融合旨在生成一幅新的图像,能够对场景进行更全面的描述。本文提出一种图像多尺度混合信息分解方法,可有效提取代表可见光特征分量的纹理细节信息和代表红外特征分量的边缘信息。本文方法将边缘信息进行进一步分割以确定各分解子信息的融合权重,以有效地将多尺度红外光谱特征注入到可见光图像中,同时保留可见光图像中重要的场景细节信息。实验结果表明,本文方法能够有效提取图像中的红外目标,实现在融合图像中凸显红外目标的同时保留尽可能多的可见光纹理细节信息,无论是主观视觉还是客观评价指标都优于现有的图像融合方法。 相似文献
8.
针对已有多曝光图像融合算法存在细节丢失的问题,提出一种基于细节增强的多曝光图像融合算法.为使图像细节更加清晰,构建三尺度融合框架;设计一种曝光亮度权重函数,结合图像饱和度及增强后的对比度,构建初始权重图;根据引导滤波计算最终权重图,在三尺度融合框架上进行加权融合.实验结果表明,与3种实验对比算法相比,该算法的融合结果能... 相似文献
9.
目的 针对已有的细节增强方法难以保持输入图像帧的色调分布的缺点,提出一种基于色调优化的图像视频细节增强算法。方法 首先,为了避免颜色通道的相关性所带来的偏色现象并提高算法效率,对输入图像帧进行颜色空间的转换,提取亮度信息。然后,采用基于局部极值的边缘保持图像滤波方法,快速地将亮度通道图像分解成一幅含有大尺度边缘信息的基图像和多幅含有小尺度细节信息的细节层图像。接着,在用户期望的细节增强系数和输入图像的颜色场的约束下,提出基于梯度域上能量优化的细节增强算法,获得色调一致的细节增强亮度图像。最后,通过颜色空间的逆转换得到最终的细节凸显效果。结果 实验结果表明,本文算法不但能够显著地增强输入图像帧的细节内容,而且能够有效地保持其原有的色调分布,显得更加真实生动。结论 本文算法基本满足科学观察、视频监控和数字视觉特效等领域的技术要求,具有很大的应用潜力。 相似文献
10.
多尺度建筑空间图像分解重组过程中易出现阶梯现象,导致图像显得轮廓过分尖锐,影响分割结果,提出一种基于特征标记的图像分解方法.通过主流色标记符与颜色空间标记符量化标记颜色方差与图像空间结果,标记图像纹理和轮廓特征,根据标记结果构建分解模型,克服全变差重组图像时引起的阶梯现象;将像素灰度值对应坐标垂直投射至坐标平面内,挑选... 相似文献
11.
水体对于不同波长的光信号衰减程度不一致,这种现象破坏了水下图像的清晰度和色彩恒定性。为了解决水下图像亮度与色彩扭曲问题,提出一种基于同态滤波的水下图像增强与色彩校正模型。首先,通过比尔-朗伯定律和路径辐射分量构建出水下成像模型。其次,通过同态滤波对未经过衰减的水下图像进行估计。最后,通过麦克劳林级数对水下成像模型进行级数展开,进而推导出一种保持颜色恒定的水下图像色彩校正模型。实验部分分别对比了水下图像的主观视觉效果和客观评价指标,验证了该算法能够有效地保证水下图像的清晰度和色彩恒定性。校正后的水下图像细节丰富,色彩逼真。 相似文献
12.
Bo WANG Zitong KANG Pengwei DONG Fan WANG Peng MA Jiajing BAI Pengwei LIANG Chongyi LI 《Frontiers of Computer Science》2023,17(2):172702
Underwater images often exhibit severe color deviations and degraded visibility, which limits many practical applications in ocean engineering. Although extensive research has been conducted into underwater image enhancement, little of which demonstrates the significant robustness and generalization for diverse real-world underwater scenes. In this paper, we propose an adaptive color correction algorithm based on the maximum likelihood estimation of Gaussian parameters, which effectively removes color casts of a variety of underwater images. A novel algorithm using weighted combination of gradient maps in HSV color space and absolute difference of intensity for accurate background light estimation is proposed, which circumvents the influence of white or bright regions that challenges existing physical model-based methods. To enhance contrast of resultant images, a piece-wise affine transform is applied to the transmission map estimated via background light differential. Finally, with the estimated background light and transmission map, the scene radiance is recovered by addressing an inverse problem of image formation model. Extensive experiments reveal that our results are characterized by natural appearance and genuine color, and our method achieves competitive performance with the state-of-the-art methods in terms of objective evaluation metrics, which further validates the better robustness and higher generalization ability of our enhancement model. 相似文献
13.
14.
目的 为提高水下获取的结构物表面缺陷图像的对比度和清晰度,便于缺陷区域的分割、提取和识别工作,提出了一种基于改进的湍流模型和引导滤波平滑的retinex的图像增强方法。方法 将光照不均的水下图像转换到Lab空间,对亮度空间进行自适应直方图均衡的匀光处理,根据暗通道先验理论估算匀光图像的透射率,结合大气湍流通用模型模拟退化图像,通过调整透射率系数获得退化图像。采用维纳滤波过滤图像噪声,将滤波后的图像作为导向图,利用导向滤波细化获得边缘保持的图像。根据3σ准则对3通道多尺度retinex (multi-scale retinex,MSR)的反射分量进行色彩矫正,获取最终增强后的水下结构物表面缺陷图像。结果 选取多组在不同湍流环境下采集的图像为研究对象,采用本文提出的方法进行实验,并与经典的暗通道算法、直方图均衡算法以及单尺度retinex算法对比,使用信噪比、信息熵、标准差和平均梯度等指标进行评估。实验结果表明,本文方法的信息熵、标准差相较直方图均衡算法和单尺度retinex分别提高了11.7%和25.6%,分割准确率上升了3.1%。从主观效果上看,本文算法图像细节更为丰富,视觉效果自然。结论 本文算法改善了退化模型的自适应问题,在信息熵、标准差、平均梯度等综合指标上均有优异表现,与暗通道先验方法相比,信噪比、平均梯度大幅提升,同时实现了缺陷的边缘保持效果,为下阶段的图像处理提供了良好的信息源。 相似文献
15.
目的 水下图像是海洋信息的重要载体,然而与自然环境下的图像相比,其成像原理更复杂、对比度低、可视性差。为保证不同类型水下图像的增强效果,本文提出在两种颜色模型下自适应直方图拉伸的水下图像增强方法。方法 首先,进行基于Gray-World理论对蓝、绿色通道进行颜色均衡化预处理。然后,根据红绿蓝(R-G-B)通道的分布特性和不同颜色光线在水下传播时的选择性衰减,提出基于参数动态优化的R-G-B颜色模型自适应直方图拉伸,并采用引导滤波器降噪。接下来,在CIE-Lab颜色模型,对‘L’亮度和‘a’‘b’色彩分量分别进行线性和曲线自适应直方图拉伸优化。最终,增强的水下图像呈现出高对比度、均衡的饱和度和亮度。结果 选取不同类型的水下图像作为数据集,将本文方法与融合颜色模型(ICM)、非监督颜色纠正模型(UCM)、基于暗通道先验性(DCP)的水下图像复原和基于水下暗通道先验(UDCP)的图像复原方法相比较,增强后的图像具有高对比度和饱和度。定性和定量分析实验结果说明本文提出的方法能够获得更好视觉效果,增强后的图像拥有更高信息熵和较低噪声。结论 在RGB颜色模型中,通过合理地考虑水下图像的分布特性和水下图像退化物理模型提出自适应直方图拉伸方法;在CIE-Lab颜色模型中,引入拉伸函数和指数型曲线函数重分布色彩和亮度两个分量,本方法计算复杂度低,适用于不同复杂环境下的水下图像增强。 相似文献
16.
目的 多曝光图像融合(multi-exposure fusion,MEF)是利用一组不同曝光度的低动态范围(low dynamic range,LDR)图像进行合成,得到类似高动态范围(high dynamic range,HDR)图像视觉效果图像的过程。传统多曝光图像融合在一定程度上存在图像细节信息受损、边界不清晰以及部分色彩失真等问题。为了充分综合待融合图像的有效信息,提出了一种基于图像分解和色彩先验的双尺度多曝光图像融合方法。方法 使用快速导向滤波进行图像分解,分离出细节层对其进行增强处理,保留更多的细节信息,同时减少融合图像的光晕伪影;根据色彩先验,利用亮度和饱和度之差判断图像曝光程度,并联合亮度与饱和度之差以及图像对比度计算多曝光图像融合权重,同时保障融合图像的亮度和对比度;利用导向滤波对权重图进行优化,抑制噪声,增加像素之间的相关性,提升融合图像的视觉效果。结果 在24组多曝光图像序列上进行实验,从主观评价角度来看,该融合方法能够提升图像整体对比度及色彩饱和度,并兼顾过曝光区域和欠曝光区域的细节提升。从客观评价标准分析,采用两种不同的多曝光图像序列融合结果的质量评估算法,评价结果显示融合性能均有所提高,对应的指标均值分别为0.982和0.970。与其他对比算法的数据结果比较,在两种不同的结构相似性指标上均有所提升,平均提升分别为1.2%和1.1%。结论 通过主观和客观评价,证实了所提方法在图像对比度、色彩饱和度以及细节信息保留的处理效果十分显著,具有良好的融合性能。 相似文献
17.
获得清晰准确的水下图像是人类探索水下世界的重要前置条件。然而与平常图像相比,水下图像往往具有对比度低、细节保留不足及颜色失真等问题,这导致其视觉效果不佳。针对上述问题,提出了基于人工欠曝光融合和白平衡技术(AUF+WB)的水下图像增强算法。首先,利用调节伽马值的方式对原始水下图像进行操作,从而生成5幅相应的欠曝光图像;然后,以对比度、饱和度及良好曝光度作为融合权重,并结合多尺度融合来生成融合图像;最后,将各类颜色通道补偿后的图像分别结合灰色世界假设白平衡生成相应的白平衡图像,再利用水下彩色图像质量评价指标(UCIQE)及水下图像质量评价标准(UIQM)对得到的白平衡图像进行评价。通过选取不同类型的水下图像作为实验样本,将AUF+WB算法与现存先进的水下图像去雾算法进行比较,结果表明AUF+WB算法在图像质量定性、定量两方面分析中和对比算法相比均有更好的表现。所提出的AUF+WB算法可矫正水下图像的颜色失真,并增强其对比度、恢复其细节,有效提升了水下图像的视觉质量。 相似文献
18.
针对传统的彩色图像水印算法往往仅是将一个随机信号或二值图像嵌入到彩色载体图像中这一问题,结合混沌系统和Schur分解的优点,提出一种将彩色水印图像嵌入到彩色载体图像中的鲁棒水印算法.首先,对彩色水印图像进行Arnold置乱和混沌加密,提高了待嵌入彩色水印图像的安全性能;其次,将彩色载体图像分离成3个通道,每一通道被划分... 相似文献
19.
水中介质和微粒的影响导致光波传播衰减和散射, 在成像过程中水下图像会出现模糊和色偏等情况, 这些
水下成像退化的情况给水下的目标识别、目标跟踪、特征提取等应用带来困难. 针对以上问题, 本文提出了一种基
于通道修正均衡化的暗通道先验(CCD)水下图像增强算法: 首先是对色偏的水下图像进行通道修正均衡化, 利用直
方图强度中心做一个映射, 并将映射的三通道信息融合到限制对比度自适应直方图均衡化中, 改善了图像色偏和对
比度不足的情况; 其次是通过暗通道先验算法进行去模糊, 通过水下增强图像数据集的实验表明, CCD比现有算法
更有效地应对了水下图像成像退化问题, 取得了更好的图像质量指标; 此外, 在特征检测预处理步骤中, 本文方法能
够将检测特征点数提高约1.88倍. 相似文献
20.
模糊C均值(FCM)被广泛应用于彩色图像分割中,但传统的模糊C均值由于没有考虑空间信息,因此对噪声特别敏感。针对此问题,提出了一种在HIS颜色空间结合像素邻域空间信息的模糊聚类新方法。实验结果表明,此方法对高噪声图像有较好的处理结果。 相似文献