首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了得到同时具有良好阻燃性能和力学性能的热塑性聚氨酯弹性体复合材料,首先通过在湿法球磨过程中引入3-氨基丙基三乙氧基硅烷(KH550)制备了改性聚磷酸铵(WMAAPP),同时将单独湿法球磨改性的聚磷酸铵(WMAPP)和溶液法引入KH550改性的聚磷酸铵(MAAPP)作为对比样品,分别将上述三种改性的聚磷酸铵以5%的含量添加到热塑性聚氨酯弹性体(TPU)中,通过极限氧指数(LOI)测试、UL 94垂直燃烧测试、锥形量热测试以及拉伸性能测试研究其在阻燃性能和力学性能方面的区别。结果表明,TPU/WMAAPP具有最高的LOI值为28.9%,并且在锥量测试中其热释放速率峰值(pk-HRR)、总热释放量和总烟释放量是所有改性聚磷酸铵(APP)样品中最低的,分别为309 kW/m2,68 MJ/m2,1 393 m2/m2。值得注意的是,仅添加5%WMAAPP的TPU比添加7.5%APP的TPU的pk-HRR还要低。在拉伸测试中,TPU/WMAAPP的拉伸强度和断裂伸长率较TPU/APP均有所提高。研究结果表明,与其他的改性方式相比,在湿法球磨过程中引入KH550制备的改性聚磷酸铵可以使阻燃TPU...  相似文献   

2.
采用硅烷偶联剂KH570对聚苯乙烯(PS)进行接枝改性来制备含氧化石墨烯(GO)的阻燃剂(KH570改性GO-PS),研究了添加聚磷酸铵(APP)的PS改性GO阻燃复合材料的性能。结果表明:GO经过偶联剂KH570改性后可以有效提高阻燃剂和聚合物之间的相容性;当KH570改性GO-PS质量分数为7.5%,APP质量分数为2.5%时,复合材料的垂直燃烧测试达到V-1级,没有发生滴落,并且具有较高的残炭率;APP质量分数为10%的试样拉伸强度与冲击强度都比单纯PS试样高,而KH570改性GO-PS质量分数为10%试样的这两项性能变化不明显;含有质量分数5.0%KH570改性GO-PS和5.0%APP的试样在250℃下熔体流动速率显著高于纯PS。  相似文献   

3.
为了进一步提高聚丙烯(PP)膨胀阻燃体系的阻燃性能,将碳微球(CMSs)添加至膨胀型阻燃聚丙烯(壳聚糖/聚磷酸铵/聚丙烯(CS/APP/PP))体系中,经熔融共混的方法制备出CMSs/CS/APP/PP复合材料。采用数显氧指数仪(LOI)、锥形量热仪(CONE)、电子万能试验机(EUT)等仪器对复合材料进行了测试,同时考察了CMSs对聚丙烯膨胀阻燃体系(CS/APP/PP)阻燃性能的影响。结果表明,CMSs的加入可提高材料的阻燃性;在CMSs添加量为3%时,复合材料的极限氧指数达到31.5%,较CS/APP/PP体系提高了18.9%;热释放速率峰值(PHRR)、平均热释放速率(MHRR)、平均有效燃烧热(MEHC)、总热释放量(THR)均明显降低,成炭率显著提高,炭层更加致密,火灾性能指数(FPI)达到最大,为0.089 3 m~2·s/kW,较CS/APP/PP体系提高了1倍多,材料的阻燃性大幅度提升。同时CMSs的加入显著提高了复合材料的抑烟性,使复合材料的总烟释放量(TSR)、CO和CO_2的排放均明显降低;且复合材料的火灾蔓延指数(FGI)显著减小,为1.16 kW/(m~2·s),较CS/APP/PP体系降低了29.9%,火灾危险性明显降低。  相似文献   

4.
采用原位聚合法制备了以环氧树脂(EP)为壁材,聚磷酸铵(APP)为芯材的微胶囊阻燃剂(MCAPP).通过垂直燃烧测试、极限氧指数等手段,研究了不同的阻燃剂配比对热塑性聚氨酯弹性体(PUR-T)阻燃性能、力学性能的影响,同时对比了微胶囊包覆前后的APP对PUR-T综合性能的影响.结果表明,加入膨胀型无卤阻燃剂能有效提高PUR-T的阻燃性能,但却大幅降低了PUR-T的力学性能,而MCAPP在保持阻燃性能的同时,减少了其对PUR-T力学性能的影响.  相似文献   

5.
采用四甲基哌啶胺、乙二胺和三聚氯氰为原料,制备了聚合受阻胺,采用傅立叶变换红外光谱和元素分析进行了表征。将聚合受阻胺添加到多聚磷酸铵(APP)和季戊四醇(PER)复配成的膨胀型阻燃剂中,制备成膨胀阻燃聚丙烯(PP)复合材料。研究了聚合受阻胺用量对膨胀阻燃PP复合材料阻燃性能的影响,并对阻燃协同作用机理进行了初步分析。结果表明,添加少量聚合受阻胺可明显提高膨胀阻燃PP复合材料的阻燃性能,当APP/PER/聚合受阻胺添加量分别为15%,5%和2.0%时,膨胀阻燃PP复合材料的极限氧指数达到28.4%,垂直燃烧达到V–0级。热重分析和热重–质谱联用测试结果表明,聚合受阻胺延迟了复合材料的热降解行为,提高了残炭量,减缓了CO和CO_2的产生速率,体现了自由基捕捉功能。扫描电子显微镜、X射线光电子能谱和激光拉曼光谱测试结果表明,添加聚合受阻胺后,复合材料形成更多的膨胀型残炭,且在残炭中C元素的含量提高,保留更多的C—H结构。  相似文献   

6.
制备了优异阻燃性能(LOI36%)兼具良好力学性能的膨胀型阻燃聚丙烯复合材料OPGS/PA-APP/PP。将有机化坡缕石黏土引入到哌嗪-多聚磷酸铵(PA-APP)膨胀型阻燃(IFR)聚丙烯(PP)复合材料中,通过极限氧指数(LOI)、垂直燃烧(UL-94)、热重分析法(TGA)、扫描电子显微镜(SEM)、通用电子万能试验机研究了有机化坡缕石黏土添加量对PA-APP阻燃聚丙烯复合材料阻燃性能和力学性能的影响。结果表明,添加质量分数为2%的有机化坡缕石黏土提高了该复合材料的阻燃性能和力学性能。此外,所制备样品经垂直燃烧测试可达到阻燃V-0级别。实验证明,有机化坡缕石黏土在膨胀型阻燃聚丙烯复合材料中具有明显的协效阻燃作用。  相似文献   

7.
李湘 《塑料》2024,(1):48-51+64
以PP废玩具料(W-PP)为主材,高岭土(Kaol)、聚磷酸铵(APP)和季戊四醇(PER)为阻燃剂,通过熔融挤出制备一系列Kaol/APP/PER/W-PP复合材料,对复合材料的极限氧指数(LOI)、UL 94阻燃等级、力学性能和热变形温度(HDT)进行测试,并用锥形量热仪进行分析,结果表明,APP/PER添加后,复合材料的阻燃性能和HDT明显提高,力学强度逐渐降低;适量的Kaol和APP/PER具有较好的协同阻燃效果,而且,添加Kaol后,复合材料的力学性能和HDT明显提升,当在W-PP中同时加入3%的Kaol和25%的APP/PER时,复合材料的LOI为32.1%,阻燃达到UL 94(1.6 mm)V-0级,与单独添加相比,拉伸强度、弯曲模量、弯曲强度和缺口冲击强度均提高了28%APP/PER的性能分别提高了16.9%、15.0%、27.4%和31.3%。  相似文献   

8.
玄武岩纤维(BF)未经改性处理和经硅烷偶联剂(KH–550和KH–570)进行处理后,添加到高密度聚乙烯(PE–HD)基体树脂中,增强PE–HD的力学性能,用傅立叶变换红外光谱和扫描电子显微镜对硅烷偶联剂处理的BF进行表征,同时,用SEM观察BF增强PE–HD复合材料的拉伸断面。结果表明,随着未经改性处理BF添加量增加,PE–HD复合材料的拉伸强度、弯曲强度逐渐提高,当添加量达到30%时,拉伸强度达到45.5 MPa,提升79.1%;弯曲强度达到41.3 MPa,提升118.9%。经KH–550和KH–570处理的BF添加量达到20%时,PE–HD复合材料的拉伸强度均达到45 MPa以上,其后随着BF添加量继续增加,拉伸强度变化不大,而弯曲强度随BF添加量的增加逐渐增大。当BF添加量达到30%时,BF改性与否对PE–HD复合材料的力学性能的影响不大。当改性BF添加量为5%~15%时,KH–550改性的PE–HD复合材料的力学性能较KH–570改性的高;当改性BF添加量为20%,25%时,KH–570改性的PE–HD复合材料的力学性能较KH–550改性的高。  相似文献   

9.
利用低成本聚氯乙烯(PVC)作为分散相、高韧性热塑性聚氨酯(PUR-T)作为连续相,以熔融共混方法制备出PUR-T/PVC合金,经过实验对比与配方优化,制备出的PUR-T/PVC合金具有低成本、较高的拉伸强度与韧性、较广的硬度范围以及良好的阻燃性能。针对PUR-T/PVC合金材料发烟量较大的缺点,引入了表面改性水合氧化铝(ATH)/聚磷酸铵(APP)复配阻燃体系,实验表明,该复配阻燃体系对PUR-T/PVC合金具有一定增韧作用的同时,能够起到较好的抑烟作用,并进一步提升了合金的阻燃性能。经过测试与配方优化,PUR-T添加量为70份、PVC为30份,邻苯二甲酸二辛酯为6份,复配阻燃剂(改性ATH与改性APP质量比为1∶2)添加量为60份时,PUR-T/PVC合金的综合性能最佳,其拉伸强度、断裂伸长率和撕裂强度分别达到23.84MPa,387.18%和86.4N/mm,极限氧指数为32.87%,垂直燃烧等级达到V–0级别,烟密度等级降至52。  相似文献   

10.
木质复合材料的胶合性能是结构用材使用过程中的重要参数,使用硅烷偶联剂KH550、等离子体(PL)、马来酸酐(MA)、盐酯刻蚀(AE)和上述方法的组合对玄武岩纤维(BF)表面进行改性,以促进玄武岩纤维增强竹木复合材料的胶合性能。研究结果表明,对玄武岩纤维增强表面进行上述方法的组合处理效果较佳,BF/竹/木复合材料胶合性能影响依次为MA550PL550AE550KH550。其中:KH550和马来酸酐接枝组合处理后,复合材料的竹-纤维胶层的剪切强度达到8.64MPa,木-纤维胶层剪切强度达到8.47 MPa;竹-纤维胶层KH550和马来酸酐接枝组合处理后比只经过KH550处理的提高了50.45%,木-纤维胶层无纤维剥离。  相似文献   

11.
利用氢氧化铝(ATH)、硅烷改性聚磷酸铵(APP)及APP/ATH复配阻燃剂与聚乳酸(PLA)、竹粉(BF)共混,制备阻燃型PLA/BF复合材料,并对其进行不同时间的浸水处理,测定阻燃型PLA/BF复合材料的吸水率和浸水处理前后的力学性能。结果表明,浸水处理后复合材料的拉伸强度和冲击强度均有不同幅度的降低,其中,APP/ATH复配阻燃剂阻燃型复合材料力学性能下降最显著,浸水4d后,其拉伸强度下降了近90%;APP和ATH单独阻燃的复合材料在浸水过程中的吸水率和吸水厚度膨胀率均较低,而APP/ATH复配阻燃剂阻燃型PLA/BF复合材料的吸水率最高,尺寸稳定性最差。  相似文献   

12.
以聚苯乙烯(PS)接枝的改性氧化石墨烯[(GO–KH570)-g-PS)]、聚磷酸铵(APP)为阻燃剂,添加到PS中制备阻燃复合材料。对阻燃复合材料进行扫描电子显微镜(SEM)、热失重(TG)、极限氧指数(LOI)、垂直燃烧等级、熔体流动速率(MFR)测试。结果表明,(GO–KH570)-g-PS与PS有较好的相容性,在添加量较低时其阻燃作用显著且能明显改善阻燃剂与聚合物相容性差的问题,(GO–KH570)-g-PS不仅具有阻燃作用而且具有增容作用。当(GO–KH570)-g-PS质量分数为7.5%,APP质量分数为2.5%时,阻燃复合材料的LOI可达到27.8%,垂直燃烧等级达到V–1级别,在700℃时的残炭率达9.30%,在250℃时的MFR为31.27 g/(10 min),并且阻燃复合材料力学性能得到改善,其缺口冲击强度为2.71 k J/m2,拉伸强度为34.643 MPa。  相似文献   

13.
经六(4-DOPO羟甲基苯氧基)环三磷腈(DOPOMPC)和聚磷酸铵(APP)处理环氧树脂(EP)的基础上加入可膨胀石墨(EG),制备新型膨胀阻燃环氧树脂复合材料(DOPOMPC/APP/EG/EP)。通过极限氧指数(LOI)、水平垂直燃烧(UL-94)、锥形量热(CONE)、扫描电镜(SEM)等方法,研究了协效剂EG加入对复合材料阻燃性能和力学性能的影响。结果表明,适量EG与DOPOMPC/APP体系有良好的协同阻燃作用,并提高了环氧树脂复合材料力学性能。当DOPOMPC/APP/EG总添加量为22%(DOPOMPC/APP/EG的比例为5/5/1),复合材料LOI值高达38.4%;热释放速率峰值(pk-HRR)、比消光面积(av-SEA)、有效燃烧热平均值(av-EHC)和一氧化碳释放率平均值(av-CO)较纯EP(EP0)分别降低了81.8%,35.5%、29.0%和33.3%;其拉伸强度、弯曲强度和冲击强度比EP1(10%DOPOMPC/10%APP/EP)体系分别提高了70.5%、1.5倍和2.6倍。  相似文献   

14.
通过水热法合成3种不同的金属铁酸盐纳米化合物(MFe2O4,其中M代表Ni,Zn,Co),并与聚磷酸铵/可膨胀石墨(APP/EG)结合以制备聚乳酸(PLA)纳米复合材料,对复合材料的阻燃性和热稳定性进行研究。结果表明:1%(质量分数,下同)MFe2O4和12%APP/EG添加量的PLA复合材料可以达到UL-94测试的V0级别;微尺度燃烧量热测试(MCC)和热重分析(TGA)表明,PLA复合材料的阻燃性和热稳定性显著提高;材料的力学性能也得到改善;MFe2O4和APP/EG在PLA中的作用机理为基于凝聚相的促进作用。  相似文献   

15.
吴笑  许博  辛菲  王向东  马雯  倪沛 《中国塑料》2018,32(5):73-78
将有机-金属杂化三嗪化合物(SCTCFA-ZnO)与聚磷酸铵(APP)复配制备了膨胀型阻燃剂(IFR),通过极限氧指数测试、垂直燃烧测试、锥形量热分析、热失重分析和扫描电子显微镜分析等表征方法研究了SCTCFA-ZnO/APP的协同作用对PP复合材料阻燃性能的影响。结果表明,APP与SCTCFA-ZnO复配可以有提高PP材料的阻燃性能,当IFR的添加量为25 %(质量分数,下同),且APP/SCTCFA-ZnO的质量比为2/1时,复合材料的极限氧指数最高,达到31.1 %,达到UL 94 V-0级;IFR可提高复合体系的温热稳定性,阻燃复合材料燃烧后会形成一层致密、连续的炭层,从而起到良好的阻燃效果。  相似文献   

16.
将海泡石(SEP)和聚磷酸铵(APP)同时加到聚氯乙烯(PVC)/竹粉复合材料中,考察SEP和APP对复合材料的协效阻燃抑烟作用及力学性能的影响。结果表明,在锥形量热实验中,热释放速率峰值相对减少42.8%,平均热释放速率和总热释放量相对减少29.5%和25.7%,总烟释放量相对降低了12.2%,一氧化碳平均产率相对降低了42.0%;扫描电子显微镜分析发现,APP具有催化成炭并形成膨胀泡沫炭层的作用,而SEP具有吸附聚集诱导成炭的作用;APP的阻燃机理主要属于气相阻燃机理,SEP的阻燃机理主要属于凝聚相阻燃机理;弯曲性能测试结果表明,SEP与APP对PVC/竹粉复合材料具有协同颗粒增强作用;拉伸性能测试结果表明,SEP对PVC/竹粉复合材料的塑性变形能力的损害比APP小。因此,SEP与APP联用能够对PVC/竹粉复合材料进行有效的阻燃抑烟,同时也能增强复合材料的力学性能。  相似文献   

17.
《塑料科技》2015,(6):89-93
以新型成炭剂聚对苯二甲酰乙二胺(PETA)和聚磷酸铵(APP)复配制备了无卤阻燃乙烯-醋酸乙烯共聚物(EVA)/APP/PETA复合材料,通过极限氧指数法和垂直燃烧法表征了复合材料的阻燃性能,通过热失重分析仪(TGA)和扫描电镜(SEM)分析了复合材料的热稳定性能和残炭表面形貌。结果表明:APP与PETA复配(IFR)后可以极大地提高EVA的阻燃性能,EVA/APP/PETA(质量比70/25/5)体系极限氧指数(LOI)达到39%,较纯EVA提高了88.4%,UL 94测试为V-0级别;EVA/APP/PETA复合材料在600℃下的残炭率达到了42%,较纯EVA残炭率高37%。SEM表明:30%IFR(APP与PETA质量比5:1)的加入提高了样品残炭表面致密性。  相似文献   

18.
利用硅烷偶联剂KH550对季戊四醇磷酸酯(PEPA)进行表面改性,得到Si-PEPA,将其与三聚氰胺聚磷酸盐(MPP)复配成膨胀型阻燃剂(IFR)对聚丙烯(PP)进行阻燃改性。研究了KH550改性PEPA对PP/IFR体系阻燃、耐水和力学性能的影响。利用极限氧指数(LOI)仪、垂直燃烧(UL94)仪、锥形量热(CONE)仪对阻燃PP的燃烧性能进行测试,结果表明,当IFR的添加量为20%时,PP/MPP/Si-PEPA体系可以达到UL94 V-0级,氧指数达到32.5%,最大热释放速率(PHRR)和总热释放量(THR)都较PP/MPP/PEPA体系有明显降低。热重分析(TGA)显示,经KH550处理后,PP/IFR材料的热稳定性显著提高。经70℃热水浸泡72 h后,PP/MPP/Si-PEPA材料仍然可以通过UL94 V-1级。同时,KH550对PEPA的表面处理也提高了PP/IFR材料的力学强度。  相似文献   

19.
采用高温高压溶液聚合法合成了一种新型磷-氮阻燃剂N-对苯二甲酸-N'-(N-亚磷酸-乙二胺)-乙二胺(IFR)。将制得的阻燃剂与聚磷酸铵(APP)进行复配,并与聚丙烯(PP)进行共混,制备了阻燃PP复合物。通过极限氧指数(LOI)测定、垂直燃烧实验(UL94)、热重分析(TG)测试对复合材料的阻燃性能和热稳定性进行了表征,并借助扫描电子显微镜(SEM)表征了残炭表面形态。结果表明,当添加9%IFR和21%APP时,PP/IFR/APP体系的极限氧指数达到最大,为28.8%,并通过了UL94 V-0级。在该比例下燃烧所形成的炭层呈现出膨胀的连续结构,可以很好覆盖于材料表面形成阻隔效果。这表明该阻燃剂与APP复配对PP具有良好的阻燃作用。  相似文献   

20.
采用一种新型含磷硅高分子阻燃剂(EMPZR)与聚磷酸铵(APP)、多聚磷酸密胺(MPP)复配成膨胀型阻燃剂(IFR),并对聚丙烯(PP)进行阻燃。当APP/MPP/EMPZR质量比为15/10/15时,所制得的复合材料的氧指数达到33.0 %,垂直燃烧达到UL 94 V 0级;与纯PP相比,拉伸强度、弯曲强度和冲击强度都没有下降;热失重分析表明,阻燃PP材料在600 ℃时的残炭量为21.14 %,成炭率显著提高;扫描电镜对残炭形貌的表征以及氧指数测试前后阻燃PP材料的红外图谱分析证实了EMPZR与APP、MPP在PP中有良好的协效阻燃作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号