共查询到20条相似文献,搜索用时 15 毫秒
2.
库水位升降与降雨条件下滑坡的渗流及稳定性分析 总被引:1,自引:0,他引:1
地下水对库岸边坡的稳定性影响重大,以库区某滑坡为例,通过对滑坡的变形特征和专业监测数据分析,结合三峡库区库水位调度方案及降雨条件,依据非饱和土渗流理论和极限平衡理论,运用有限元分析软件Geo-Studio,对该滑坡设置了8种工况,分析其在145~175 m库水位波动及降雨条件下的渗流及稳定性。计算结果表明滑坡体内地下水位随库水位升降而升降,降雨对滑体后部地下水位有一定影响;滑坡稳定性在库水位上升时减小,且上升速率越大,稳定性系数越小;库水位下降,稳定性系数先减小后增大;降雨条件下,稳定性系数有所减小。所得结果可为库岸边坡的稳定性分析提供一定参考。 相似文献
3.
为探索水库边坡尤其是土质边坡在库水位升降条件下渗流场的变化规律及边坡的稳定性,建立了较大比例尺的库岸土质边坡地质试验模型。用孔压计测得试验模型的孔隙水压力随水位升降的变化值,以非饱和渗流理论为基础,并结合试验所测数据,用Geostudio有限元数值分析软件SEEP/W 模块进行水位升降条件下的瞬态渗流场模拟。结果表明:坡体孔隙水压力随试验水位的升降而变化,坡体位置高程越高,孔隙水压力和基质吸力变化的滞后性越明显。孔隙水压力模拟值与计算值基本一致,表明模拟所选参数和水土特征曲线能反映模型试验情况。 相似文献
4.
李险峰 《水资源与水工程学报》2019,30(6):194-200
目前,关于库水位联合降雨不同工况组合下滑坡渗流稳定问题的研究较少,为此基于非饱和渗流及稳定分析理论,以三峡库区蔡坡堆积体为研究背景,利用Geostudio软件对降雨、库水位及其组合工况下的堆积体边坡的渗流特性及稳定性进行了数值模拟,得到了边坡不同部位的孔压变化、边坡的安全系数曲线及湿润锋发展规律。结果表明:库水位骤降速率越大,则孔压下降越快,降雨强度越大,则孔压上升幅度越大,单纯降雨孔压上升幅度要大于库水位骤降情况孔压下降幅度。降雨发生在库水位骤降不同时刻的孔压特性综合了单纯降雨与单纯库水位下降的综合特性,位于边坡下部的孔压值要大于上部。库水位骤降下安全系数先降后升,降雨情况下安全系数先下降后保持稳定,单纯降雨导致的安全系数降幅要大于单纯库水位骤降情况,降雨发生在库水位骤降不同时刻下,安全系数在降雨时刻有一个突降,其中降雨发生在第6~8 d安全系数最小。降雨联合库水位骤降边坡失稳概率最大。库水位骤降速率越大浸润线越下凸,降雨强度越大边坡表层的湿润锋发展越充分,降雨与库水位联合作用下湿润锋变化规律相似,但是浸润线的下凸程度不同,这是导致这种情况下边坡安全系数不一致的原因。 相似文献
5.
实践表明,水库蓄水后库水位涨落对边坡稳定性有显著影响。三峡水库运行期的库水位周期性升降,有2种不同的消落方式:第1种是汛前大幅度缓慢消落方式,水库水位从175.0 m缓慢下降至145.0 m,平均下降速度为0.2 m/d,第2种是汛期消落方式,水库水位从162.0 m快速下降至145.0 m,平均消落速度为1.2~2.0 m/d。以三峡库区秭归县某滑坡为研究对象,利用有限元计算软件,取不同库水位升降速率(以最危险工况下的库水位下降速率2.0 m/d为初始值逐渐增加)进行滑坡渗流计算,获得不同库水位升降速率下的地下水位,采用Morgenstern-Prince法,考虑库水位升降速率变化引起的地下水位变化,计算获得滑坡在不同条件下的稳定系数,并得到不同库水升降速率下滑坡稳定系数变化图。研究表明,随着库水下降速率的增大,滑坡的稳定系数逐渐减小,且在速率变化的初期阶段,稳定系数出现明显的陡降。 相似文献
6.
在渗流稳定性分析理论的基础上,采用SEEP/W软件和SLOPE软件研究了三峡库区某库岸边坡随库水位变化条件下的渗流和稳定性变化规律。研究表明,三峡水库蓄水到175 m水位时,虽然该岸坡不存在滑移失稳,但岸坡所处自然条件发生很大改变,由于波浪对库岸边坡的淘蚀作用,可能产生不同程度的塌岸,建议采取相应的护坡防护措施。 相似文献
7.
为了研究锦屏一级水电站蓄水过程中库水位变化对边坡地下水渗流特征的影响,将左岸边坡构建精细的地质模型,并以饱和—非饱和渗流理论为基础,应用Geostudio Seep/W分别对5个库水位升降工况进行数值计算。结果表明:当库水位上升时,地下水渗流方向会由指向坡外变为指向坡内,而坡表的孔隙水压力首先增大,浸润线呈现出上凹的特征。当库水位下降时,地下水渗流方向会由指向坡内变为指向坡外,坡表的孔隙水压力快速减小,浸润线呈现出下凹的特征。而无论是库水位下降还是上升,岸坡内的渗流场变化始终会滞后于库水位的变化。产生这种滞后现象的原因与库水位升降速率和坡体渗透系数的大小有关。当渗透系数小于升降速率时,渗流场的动态变化就会产生滞后现象,并且库水位升降速率越快这种滞后现象越明显。 相似文献
8.
从非饱和降雨入渗特性、堆积体滑坡稳定性评价方法、降雨诱发堆积体滑坡失稳机理三方面,综述了国内外降雨型堆积体滑坡渗流稳定性的研究进展。针对目前降雨型堆积体滑坡渗流稳定性研究中存在的不足,指出今后应明确降雨型堆积体滑坡的地质结构特征,深入研究渗流与径流的耦合机制及渗流-地质结构-力学参数的互馈耦合作用机制,加强降雨型堆积体滑坡的动态灾变机制研究,完善降雨型堆积体滑坡的安全性评价方法。 相似文献
9.
针对库水位快速下降不利于滑坡稳定的现状,提出库水位以间歇性方式下降,即在传统库水位持续性下降分析的基础上,以三峡库区某一堆积体滑坡为例,利用Geo-Studio软件详细分析了在库水位不同间歇时间和多阶段间歇下降条件下堆积体滑坡稳定情况。结果表明库水位实行间歇性下降,间歇时间有助于滑坡体内孔隙水压力消散,减小库水快速下降引起的地下水回落的滞后性,有利于水力梯度降低;相比库水位持续性下降,滑坡稳定性得到提高,但稳定系数与间歇时间并不呈正比例关系;在库水位实行多阶段间歇性下降后,提高的程度明显增大,达到5%以上。为了使滑坡稳定性提高的效果达到最佳,应合理地安排库水位下降和间歇时间。 相似文献
10.
平扎营老滑坡位于三峡库区重庆市云阳县境内,为一近故陵向斜轴部的大型顺层堆积体滑坡。老滑坡边界特征清晰,三峡库区蓄水后,堆积体变形迹象明显,滑坡复活后威胁人口众多,经济及社会影响大。故对此滑坡采取现场航空三维影像拍摄、探槽、钻孔等多种勘查手段,获取详实的工程勘察资料。通过采用变形分区、多剖面控制的方法,对该滑坡特征及成因机制进行了分析,同时总结了岸坡滑动变形演化的模式,评价了坡体稳定性并对水位变化对稳定性的影响进行了分析,以期为库区内滑坡的防治提供参考与借鉴。 相似文献
11.
库岸滑坡失稳多与水库水位波动相关,尤其是水库快速泄水过程发生滑坡的几率更大。已有研究显示,水位快速变化将改变滑坡稳定性,因此研究水库水位下降速率与坡体稳定性的演变,对一定程度上控制或减缓地质灾害发生具有实际意义。采用有限元数值模拟,分析不同水位下降速率对滑坡渗流场的影响,结合极限平衡法探讨水位变动速率对滑坡稳定性的影响机理和规律。结果表明:随着水位下降速率不断增大,水头差呈非线性(二次多项式)增加;水位下降速率由1 m/d增大至3.5 m/d时,滑坡整体最小稳定性系数降低6%;当水位下降速率大于2.5 m/d时,滑坡体将发生失稳;滑坡体稳定性系数最小值所对应的水位成阶梯式下降,在1/2和1/4坡高处,滑坡体稳定性较差。 相似文献
12.
13.
以云南观音岩水电站右岸铅厂沟滑坡为例,在现场地质调查的基础上,通过室内试验和反演的方法确定滑坡岩土体物理力学参数,运用Geo-Studio计算滑坡体在不同工况下的安全系数。结果表明,在原河床水位下,铅厂沟滑坡体稳定性较好。水库蓄水后,随着库水位升高,铅厂沟滑坡体稳定性会降低。当库水位骤降时,坡体稳定性亦会略微下降。若遇暴雨或地震等恶劣状况,坡体稳定性会大幅度降低。对此提出了削坡减载的治理措施,并对治理后的边坡进行稳定性分析。结果表明,经削坡治理后,坡体稳定性有较大提高,满足相应的安全储备要求。 相似文献
14.
15.
水库蓄水后,库水位的抬升和周期性涨落,改变了岸坡原有的水-岩作用环境与条件,成为诱发水库滑坡地质灾害的主要影响因素。采用监测数据分析、极限平衡分析和数值模拟等多种研究手段,针对三峡水库蓄水后,在不同的库水位运行工况下,库区某堆积体滑坡变形规律及稳定性进行了研究。研究结果表明:堆积体滑坡在水位抬升过程中安全系数有所增加;水位快速降落时,安全系数降低幅度在2%~10%之间;叠加地震作用后,安全系数进一步降低,降低幅度在8%~10%之间,滑坡安全系数小于1,边坡已经失稳,建议采取有效的工程治理措施。 相似文献
16.
17.
三峡库区是中国地质灾害易发区。为探究库水下降时滑坡的稳定性变化,以白家包滑坡为研
究对象,利用GeoStudio软件,建立渗流场-稳定性分析-位移场计算模型,模拟出库水位以不同速度消
落时地下水渗流的消散变化及浸润线滞后库水位的时间效应,深入研究了库水降速下滑坡稳定系数及
滑坡位移场的变化。结果表明:库水下降过程中,滑坡前缘为浸润线变化的重点区域,库水下降降幅增
大,浸润线外凸趋势增强,浸润线滞后于水位线的变化越明显,滑坡受坡体内外水头差动水压力作用,形
成瞬态渗流场,饱和度增加,基质吸力减小,黏聚力、抗剪强度减小,稳定性降低,滑坡前缘位移变形增
加。 相似文献
18.
19.
采用混凝土防渗墙对心墙土石坝进行加固,考虑坝体土料的非饱和特性,对加固前后土石坝在库水位骤降情况下的渗流稳定特性进行有限元计算分析,结论如下:当水位骤降时,加固前的坝体中孔隙水来不及排出,浸润线呈"上凸"状,坝顶向上游发生较大变形,上游坝坡形成贯通塑性区,坝坡抗滑安全系数较小.设置混凝土防渗墙后,心墙内的浸润线降低,坝顶位移和沉降变小,塑性贯通区消失,坝坡安全系数增加.计算表明,混凝土防渗墙与坝基相连,在坝体内部形成"纵向增强体",坝体整体刚度增强,抗渗性增强,坝体的变形得到有效限制,坝体的稳定性明显提高. 相似文献