首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
为解决LNG储罐泄漏扩散模拟分析过程中存在计算和分析过程过于复杂的问题,通过选取适当的气体扩散模型,利用Matlab编写程序,对甲烷气体的扩散进行快速模拟计算,形成气体扩散浓度分布图,预测甲烷蒸汽在向下风向扩散的过程中形成爆炸危险区域,并模拟分析风速、地表粗糙度、泄漏速率等因素对LNG泄漏气体扩散影响。研究结果表明,当风速方向和泄漏源泄漏方向一致时,甲烷蒸汽扩散距离和危险区域面积随风速增大呈减小趋势;甲烷蒸汽在下风向扩散距离及危险区域面积随着地表粗糙度的增大而减小;甲烷蒸汽扩散距离和危险区域面积随泄漏速率的增大而增大。  相似文献   

2.
采用计算流体动力学软件Fluent建立气体扩散模型,对Burro系列试验进行模拟计算,对比分析不同距离监测点体积分数(后文称浓度)最大值以及浓度范围随时间的变化趋势,结果表明模拟值与试验值基本吻合,模型结果略偏保守。利用验证的CFD模型方法对海上气体泄漏扩散事故实例进行船周气体浓度分布研究,分析不同泄漏强度、风速下抢险船安全作业距离,研究表明:浮力和船体阻碍可影响船周气体浓度分布;抢险作业安全距离随泄漏速度的增大而增大,随风速的增大而减小,且受泄漏速度与风速的联合影响。该模型可为海上气体泄漏扩散应急抢险作业安全指导提供参考。  相似文献   

3.
天然气管线泄漏扩散及危害区域分析   总被引:10,自引:3,他引:10  
对天然气扩散浓度进行研究,可以解决泄漏气体沿地面扩散所形成的危险区域预测问题,为管道运行和抢修提供安全保障,对于输气管线的风险后果定量分析具有重要的意义。为此,考虑到天然气泄漏扩散的特殊性,选取高斯模型作为扩散危害基本模型,给出了非正常泄漏状态下模型的修正函数。结合3种典型的泄漏扩散事故情景,模拟分析了天然气职业接触浓度限值和爆炸上、下限浓度所对应的扩散距离和危害区域面积;此外还对比分析了风速、泄漏孔径及泄漏时间等因素对扩散危害面积的影响。算例结果表明,管道发生连续泄漏时,危害区域的面积随风速的增大而减小,随泄漏孔径的增大而扩大。发生大规模瞬态泄漏时,在泄漏初期,人员产生不适症状的危害区域及爆炸危险区域都随时间的增加而逐渐扩大;随着时间的延长,泄漏气体不断被空气稀释而使得浓度降低,若时间足够长,危害区域将不再存在。  相似文献   

4.
通过对平坦地区天然气管路不同泄漏点气体扩散模拟研究发现,静风条件下,天然气在大气中自由扩散稳定后,不同泄漏点泄漏后的速度、浓度分布趋势基本一致,均关于泄漏口垂直方向对称,喷口附近、喷口垂直上方及近地面区域的硫化氢浓度较高,属危险区域;有风条件下,喷射区域发生弯曲,气体扩散范围增大,风对污染物起输送、稀释、扩散作用,其效果随高度增加不断增强,模拟空间内危险区域随着风速的增大而减小.不管有无风力影响,泄漏口距集输起端越近危险性越大.模拟得出的不同位置气体泄漏扩散规律及危险区域,将为安全生产和应急抢险提供较好的参考依据.  相似文献   

5.
为研究烃类物质大气排放所引起的潜在危险,针对某海上平台建立模型,并应用FLUENT软件对平台冷放空泄放气体扩散过程进行了数值模拟研究。研究了可燃气体扩散的基本规律,分析了不同风向、风速、泄放量、冷放空管径、以及泄放口朝向对可燃气体扩散的影响,并将数值模拟结果与规范中的推荐值作了比较,并依据计算结果对冷放空管的设计提出了建议。  相似文献   

6.
含硫天然气发生连续泄漏时,危害区域的面积随风速的增大而减小,随泄漏孔径的增大而扩大。发生大规模瞬态泄漏时,在泄漏初期,人员产生不适症状的危害区域及爆炸危险区域都随时间的增加而逐渐扩大;随着时间的延长,泄漏气体不断被空气稀释而使得浓度降低,若时间足够长,危害区域将逐步消失。通过含硫化氢天然气泄漏扩散后果的计算和模拟,可以得出含硫天然气扩散浓度与距离及高度的关系。  相似文献   

7.
为分析天然气泄漏事故的危险性,以天然气净化分离器为研究对象,利用高斯烟羽模型描述天然气泄漏的运动扩散规律,运用VB编程和MATLAB语言开发了净化分离器泄漏扩散模拟软件,研究光照、风速、昼夜和泄漏压力等因素对泄漏后果的影响。研究表明:光照越强泄漏扩散范围越大,并且弱光照泄漏的危害大于强光照;泄漏扩散距离随风速的增大呈现先减小后增大的变化趋势,在风速逐渐增大的过程中,存在危险风速,此时泄漏物浓度最高;白昼泄漏的影响范围要远大于夜间,但夜间天然气的泄漏比白昼更具危险性。  相似文献   

8.
氢气储运是氢能利用的关键环节,管道输运作为最经济的氢能输送方式,其安全性至关重要,一旦管道发生泄漏将引发爆炸事故。通过建立管输氢气泄漏扩散模型,分析了氢气泄漏后的扩散浓度、趋势和峰值高度,研究了管输压力、泄漏点孔径、外界风速、障碍物高度、障碍物间距等因素对氢气扩散的影响规律。研究结果表明,随着泄漏点孔径增大,氢气扩散范围越广;高压管道的氢气扩散高度峰值更高;在竖直方向氢气扩散高度峰值与障碍物高度成正比;风速对氢气存在升力作用,影响气体泄漏扩散方向。  相似文献   

9.
为研究泄漏孔径、泄漏点水深以及外部风速对海底输气管道泄漏后果的影响,以某海底输气管道为研究对象,选取两种泄漏孔径,两种泄漏水深,9种风速进行泄漏扩散的模拟计算。计算包含泄漏模拟、气体水中扩散计算及气体在空气中扩散的CFD模拟。最终得到各泄漏工况条件下可燃气体云团体积及影响范围。通过对数据进行归纳分析,得到气云扩散及影响距离的变化规律。结果表明,泄漏速率和泄漏水深会影响海底管道泄漏后气体到达海面的气体释放面积和气体垂直流速,进而影响气云在海面的扩散后果,风速会影响气云扩散的范围和浓度分布。泄漏孔径、泄漏点水深以及外部风速是进行海底管道泄漏扩散分析的关键因素,需要在分析中进行系统性考虑以全面反映海底管道的风险水平。当前分析方法能够较全面地分析以上关键因素对后果的影响,为现场抢险、应急响应等提供判据和输入,有助于完善应急准备分析和制定更加有针对性的应急处置方案。   相似文献   

10.
将计算机技术、网络技术和地理信息系统技术相结合,建立了一套基于Internet的B/S模式网络地理信息系统(WebGIS),利用该系统根据非重气云扩散的高斯(Gaussian)模型对瞬时泄漏和连续泄漏两种事故类型的气体扩散情况进行了图形模拟。模拟结果通过在电子地图上绘制出气体浓度等值线的方式,可视化显示出发生泄漏事故后泄漏源周围的气体浓度分布状况及其对周围环境的影响情况。通过工程实例验证了系统的可行性并展示了系统的运行效果。该系统通过将地理信息系统与气体扩散的模拟模型相结合,形象、直观地模拟出危险非重气体泄漏后的影响范围,为非重气体的日常管理、事前预测和事故时的应急指挥等提供了专业化的信息支持。  相似文献   

11.
目的探究多因素耦合下掺氢导致的天然气长输管道泄漏扩散规律。 方法以西气东输二线工程为研究对象,采用Fluent软件建立管道二维平面泄漏扩散模型,通过单因素和多因素耦合分析掺氢比、泄漏孔径、风速和大气温度对掺氢天然气泄漏扩散的影响。 结果随着掺氢比增加,甲烷扩散区域的质量分数和宽度减小,而氢气则相反;随着泄漏孔径增大,掺氢天然气扩散的质量分数和范围增加;随着风速增加,掺氢天然气泄漏后扩散的质量分数增加,且分布逐渐向下风向偏移,而扩散高度减小;大气温度对掺氢天然气泄漏扩散的影响不显著。不同因素对掺氢天然气管道泄漏扩散范围的影响程度为:泄漏孔径>风速>掺氢比>大气温度。 结论4种影响因素中,泄漏孔径对掺氢天然气管道泄漏扩散的影响程度最大,因此应重点防范掺氢天然气管道因腐蚀等因素引起的管道开裂、穿孔引起的泄漏。   相似文献   

12.
风力对天然气管道泄漏后扩散过程的影响研究   总被引:4,自引:2,他引:2  
天然气管道发生泄漏扩散是输气管道事故危害的根本原因,而风力是影响泄漏后天然气扩散过程的一个极为重要的因素,建立有风条件下天然气泄漏扩散的位移量计算模型是正确评估输气管道事故损失后果的关键技术之一。通过风速与风压关系的研究,确定了风速分布关系式;并结合管道泄漏扩散过程的特殊性,在考虑管道孔口泄漏过程的射流作用和膨胀效应,以及重力作用影响效果的基础上, 重点考虑了水平风速的影响,给出了在风力作用下泄漏后天然气团偏移量的计算公式,建立了三维空间内的位移量计算模型,并进行了实例计算。结果表明,风力的存在将加剧天然气的扩散,使泄漏的天然气团顺风向偏移,其偏移尺寸远大于其他两个方向,大大增加了天然气泄漏后的危害面积。  相似文献   

13.
刘康  陈国明  魏超南 《石油学报》2015,36(8):1018-1028
考虑到浮式生产系统(FPSO)作业过程中存在的油气泄漏及火灾、爆炸等连锁风险,为了科学评估FPSO天然气泄漏风险,基于计算流体动力学理论,采用通用CFD软件Fluent建立FPSO关键系统泄漏天然气的扩散行为预测与评估模型,分析、判断可燃气体运动特点及危险区域的分布规律。根据仿真结果和对比分析,研究了泄漏可燃气体的扩散过程、行为特点以及风向、风速和泄漏速率等关键因素对可燃气体扩散危险区域的影响规律,综合考虑仿真结果与相关标准的要求,合理确定FPSO上部模块的一级2区IIA组危险区。结合FPSO油气泄漏风险特点,从工程应用角度提出应对措施与建议。  相似文献   

14.
陈浩 《焊管》2023,46(5):44-49
为提高输气管道泄漏危害范围的预测精度,以便在管体泄漏发生时快速合理的设置警戒区域。通过控制变量法,利用ALOHA软件对输气管道泄漏事故进行动态模拟和后果趋势分析,并结合多元线性回归拟合影响因素与伤害距离的关系。结果表明,管道长度、管道压力的增大会使管道泄漏导致的危害范围增大,随着泄露孔径的增大,危害范围呈现先增大后减小的趋势,风速增大、地面粗糙度的增加,有利于减小泄漏导致的危害范围;多元线性回归的拟合精度较高,平均相对误差为2.15%;单因素分析表明,泄漏孔径、管道长度、管道压力、风速对泄漏导致的危害范围影响显著,而地面粗糙度对危害范围的影响不显著;通过在最不利条件下进行实地模拟,发现室内外的甲烷扩散体积分数超过了AEGL-1的极限值,说明居民区与管道的安全距离不够,应扩大安全距离或采取其他必要的防护措施。研究结果可为输气管道泄漏事故的有效预防和应急处理提供实际参考。  相似文献   

15.
天然气管道孔口泄漏危险域的研   总被引:6,自引:0,他引:6  
杨昭  赖建波  韩金丽 《天然气工业》2006,26(11):156-159
天然气管道的泄漏严重威胁到泄漏点附近的生命财产安全,管道泄漏造成的最大危险是火焰热辐射和气体爆炸。为此,通过建立泄漏率模型、气体喷射扩散模型和火焰热辐射数学模型,研究了非等温天然气管道孔口泄漏的危险范围。根据气体的着火下限和目标的热毁伤阈值得到了气体喷射和火焰喷射的危险距离,分析了输气压力、管径、泄漏率和泄漏点位置对危险距离的影响,为管道的安全建设提供了理论依据。  相似文献   

16.
为了揭示换气通风风速对天然气管舱泄漏扩散特性的影响,本文采用Realizable k-ε湍流模型和组分输运模型对地下综合管廊天然气管舱不通换气工况下的泄漏扩散过程进行数值模拟研究。结果表明:无风时,扩散过程主要受湍流涡对及舱顶反射作用,各泄漏工况下天然气向管舱两侧对称卷吸扩散,小孔泄漏管舱内甲烷浓度分布分层现象比大孔泄漏明显,可燃气体监测报警时间呈"V"型分布。有风时,上风向区域天然气浓度逐渐降低;下风向区域大涡团失稳分裂成小涡团,湍流强度增大,卷吸作用增强,天然气呈"蜗牛"状漂移扩散。风速逐渐增大时,报警时间与泄漏口至监测点的距离成线型增长关系;风速超过3.81m/s后,天然气泄漏后迅速与空气混合稀释,管舱内甲烷浓度均低于爆炸下限的20%,可燃气体监测报警器不再报警。  相似文献   

17.
城市埋地天然气管道泄漏扩散数值模拟   总被引:2,自引:2,他引:0  
针对城市埋地天然气管道穿孔泄漏扩散问题,结合有限容积法,利用Gambit 2.4建立了天然气管道不同泄漏位置的CFD仿真模型,利用Fluent 6.3分别对天然气管道上部、下部及背风侧3种泄漏工况下,气体在土壤中和空气中的扩散规律进行了数值模拟。研究结果表明,下部泄漏在土壤和空气中的危险范围最大,关闭泄漏管段两端阀门以后,气体扩散危害范围逐渐变小。研究结果为城市埋地天然气管道泄漏事故现场人员疏散及安全抢修提供了理论依据。  相似文献   

18.
高含硫天然气管道在运行过程中由于腐蚀等原因经常会发生孔口泄漏事故,对周围人身安全和环境造成危害。利用CFD软件Fluent对有风状态下高含硫天然气管道发生孔口泄漏后CH4和H2S的扩散情况进行了数值模拟。结果表明,CH4受浮力影响向高空扩散趋势明显,其爆炸范围集中在泄漏口附近;H2S由于初始动量较大,在泄漏孔口附近会向高空扩散,但随着动量的减少和扩散距离的增加,在重力的作用下会逐渐降落到地面附近;对比3m/s和1m/s风速情况下CH4和H2S的扩散情况,在1m/s风速下CH4的爆炸范围会略有增加,高浓度H2S会达到更高的范围,且靠近泄漏口附近的地面浓度会更低。  相似文献   

19.
含硫天然气井井喷失控15分钟H2S扩散数值模拟   总被引:1,自引:1,他引:0  
根据油气井现场实际条件,建立了数值计算的物理与几何模型。主要考虑环境风速和井喷气口初始喷出速度两个主要因素,对井喷后15min H2S浓度分布进行分析。研究结果表明:2m/s以上的风速可以使H2S扩散形成一个沿风向偏转下压的类似椭圆的区域,并且下压的程度随风速增大而增大;气体喷出初速度一定时,H2S的扩散区域随着风速的增大而增大,但是近地面类椭圆较高浓度区域则呈现先增大后减小的趋势;当环境风速一定时,H2S的扩散区域随着喷口初速度的增加而增大;在较高的喷出速度条件下,H2S扩散会出现涡流,扩散至远处地面后还会出现"反弹"的现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号