首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
周瑛  卢晗锋  刘灿  陈银飞 《化工学报》2011,62(7):1885-1891
为降低堇青石载体对钙钛矿催化剂活性和稳定性的影响,以堇青石蜂窝陶瓷为基材,采用原位沉淀和悬浮浸渍技术分别制备了SiO2和La2O3为涂层的结构型LaMnO3催化剂,通过甲苯催化燃烧反应考察了催化剂的活性和热稳定性。结果表明,原位沉淀技术虽然可以均匀和高强度地在载体表面负载La、Mn活性组分,但无法在表面形成LaMnO3钙钛矿的活性相。悬浮浸渍技术则可以保持LaMnO3催化剂的结构和活性,结构催化剂与粉末LaMnO3表现出相似的活性规律。La2O3涂层比SiO2涂层可以更有效地保持LaMnO3在蜂窝陶瓷载体表面的高活性和热稳定性。  相似文献   

2.
The performance of La(1?y)SryNixCo(1?x)O3 perovskites for the water gas shift reaction (WGSR) was investigated. The samples were prepared by the co- precipitation method and were performed by the BET method, XRD, TPR, and XPS. The catalytic tests were performed at 300 and 400 °C and H2Ov/CO = 2.3/1 (molar ratio). The sample with the highest surface area is La0.70Sr0.30NiO3. The XRD results showed the formation of perovskite structure for all samples, and the La0.70Sr0.30NiO3 sample also presented peaks corresponding to La2NiO4 and NiO, indicating that the solubility limit of Sr in the perovskite lattice was surpassed. The replacement of Co by Ni favored the reduction of the species at lower temperatures, and the sample containing Sr presented the highest amount of reducible species, as identified by TPR results. All samples were active, the Sr containing perovskite appearing the most active due to the highest surface area, presence of the La2NiO4 phase, and higher content of Cu in the surface, as detected by XPS. Among the samples containing Co, the most active one was that with x = 0.70 (60% of CO conversion).  相似文献   

3.
The synthesis of new families of perovskites with a 1:2 ordered Ba(Zn1/3Ta2/3)O3-type structure was investigated. The compound La(Li1/3Ti2/3)O3 was prepared with a 1:2 ordered arrangement of Li and Ti and is the first reported titanate with this type of structure. A new family of ordered perovskites, (Sr2/3La1/3)(Li1/3Ta2/3)O3 and (Sr2/3La1/3)(Li1/3Nb2/3)O3, were also prepared with a 1:2 layered order of Li+ and B5+ cations. All three compounds exhibit dielectric constants >25 and Q.f values >20,000. Studies were also made on the phase stability of Zn-deficient compositions of BZT. The hexagonal perovskite, Ba8ZnTa6O24, was isolated in single-phase form and was found to be the stable phase formed as a result of the loss of ZnO from BZT. Ba8ZnTa6O24 can be sintered to high density at temperatures considerably lower than pure BZT and exhibits very good microwave properties. In particular at GHz frequencies ε=30.5, Q.f=62,000, and τf=+36 ppm/°C.  相似文献   

4.
La(1−x)SrxCo(1−y)FeyO3 samples have been prepared by sol–gel method using EDTA and citric acid as complexing agents. For the first time, Raman mappings were achieved on this type of samples especially to look for traces of Co3O4 that can be present as additional phase and not detect by XRD. The prepared samples were pure perovskites with good structural homogeneity. All these perovskites were very active for total oxidation of toluene above 200 °C. The ageing procedure used indicated good thermal stability of the samples. A strong improvement of catalytic properties was obtained substituting 30% of La3+ by Sr2+ cations and a slight additional improvement was observed substituting 20% of cobalt by iron. Hence, the optimized composition was La0.7Sr0.3Co0.8Fe0.2O3. The samples were also characterized by BET measurements, SEM and XRD techniques. Iron oxidation states were determined by Mössbauer spectroscopy. Cobalt oxidation states and the amount of O electrophilic species were analyzed from XPS achieved after treatment without re-exposition to ambient air. Textural characterization revealed a strong increase in the specific surface area and a complete change of the shape of primary particles substituting La3+ by Sr2+. The strong lowering of the temperature at conversion 20% for the La0.7Sr0.3Co(1−y)FeyO3 samples can be explained by these changes. X photoelectron spectra obtained with our procedure evidenced very high amount of O electrophilic species for the La0.7Sr0.3Co(1−y)FeyO3 samples. These species able to activate hydrocarbons could be the active sites. The partial substitution of cobalt by iron has only a limited effect on the textural properties and the amount of O species. However, Raman spectroscopy revealed a strong dynamic structural distortion by Jahn–Teller effect and Mössbauer spectroscopy evidenced the presence of Fe4+ cations in the iron containing samples. These structural modifications could improve the reactivity of the active sites explaining the better specific activity rate of the La0.7Sr0.3Co0.8Fe0.2O3 sample. Finally, an additional improvement of catalytic properties was obtained by the addition of 5% of cobalt cations in the solution of preparation. As evidenced by Raman mappings and TEM images, this method of preparation allowed to well-dispersed small Co3O4 particles that are very efficient for total oxidation of toluene with good thermal stability contrary to bulk Co3O4.  相似文献   

5.
La2O3 doped diamond-like carbon films (DLC) with different concentration were deposited by using Radio-Frequency magnetron sputtering. The microstructure and surface properties of DLC films were characterized by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and contact angle test. The blood compatibility of the samples was evaluated by tests of platelet adhesion. Results show the sp2-bonded C content increases with increasing of La2O3 concentration doped. A remarkable decrease of platelet adhered on the surface of the La2O3 doped DLC films was observed comparing to the Chrono flex used in clinical application, suggesting that La2O3 doped DLC is able to enhance its blood compatibility. The mechanism of hemocompatibility of doped films was discussed. Our results demonstrate that La2O3 doped DLC films are potentially useful biomaterials with good blood compatibility.  相似文献   

6.
Hydrogen production from steam reforming of acetic acid was investigated over Ni/La2O3-ZrO2 catalyst. A series of Ni/La2O3-ZrO2 catalysts were synthesized by sol-gel method coupled with wet impregnation, which was characterized by XRD, BET, TEM, EDS, TG, SEM and TPR. Catalytic activity of Ni/La2O3-ZrO2 was evaluated by steam reforming of acetic acid at the temperature range of 550-750 °C. The tetragonal phase La0.1Zr0.9O1.95 is formed through the doping of La2O3 into the ZrO2 lattice and nickel species are highly dispersed on the support with high specific surface area. H2 yield and CO2 yield of Ni/La2O3-ZrO2 catalyst with 15%wt Ni reaches 89.27% and 80.41% at 600 °C, respectively, which is attributed to high BET surface area and sufficient Ni active sites in strong interaction with the support. 15%wt Ni supported on La2O3-ZrO2 catalyst maintains relatively stable catalytic activities for a period of 20 h.  相似文献   

7.
《Journal of Catalysis》2005,229(2):459-469
This paper deals with the preparation (by combustion synthesis), the characterization (by XRD, AAS, BET, SEM, TEM, TPD/R, and XPS analyses), the catalytic activity testing (in a temperature-programmed combustion microreactor and in a DSC analyzer), and the assessment of the reaction mechanism of a series of nanostructured soot combustion catalysts based on La–Cr substoichiometric or alkali-metal-substituted perovskites (La0.9CrO3, La0.8CrO3, La0.9Na0.1CrO3, La0.9K0.1CrO3, La0.9Rb0.1CrO3, La0.8Cr0.9Li0.1O3), whose performance is compared with that of the standard LaCrO3. Some conclusions are drawn concerning the role of each single constituting element on the activity of the most promising catalyst, La0.8Cr0.9Li0.1O3, which is already active well below 400 °C. The role of weakly chemisorbed O surface species in particular is pointed out as crucial for the soot combustion process. This indicates the way for the development of new, more active catalysts, possibly capable of delivering amounts of these oxygen species even higher than those obtained (about 700 μmol / g) for the most active Li-substituted lanthanum chromite catalyst developed.  相似文献   

8.

Abstract  

The total oxidation of toluene is studied over catalytic systems based on perovskite with general formula AA′CoO3-δ (A = La, A′ = Sr). The systematic and progressive substitution of La3+ by Sr2+ cations in the series (La1−x Sr x CoO3−δ system) of the perovskites have been studied to determine their influence in the final properties of these mixed oxides and their corresponding reactivity performance for the total oxidation of toluene as a model volatile organic compound with detrimental effects for health and environment. The structure and morphology of the samples before and after reaction have been characterized by XRD, BET and FE-SEM techniques. Additional experiments of temperature programmed desorption of O2 in vacuum and reduction in H2 were also performed to identify the main surface oxygen species and the reducibility of the different perovskites. It is remarkable that the La1−x Sr x CoO3−δ series presents better catalytic performance for the oxidation of toluene, with lower values for the T50 (temperature of 50 % toluene conversion) than the previously studied LaNi1−y Co y O3 series.  相似文献   

9.
The mechanical behavior of a perovskite-type ceramic based on partially substituted lanthanum cobaltites is studied over a wide temperature range. The La0.8Ca0.2CoO3 composite is shown to be the most inelastically deformable, high-strength, and crack-resistant. In perovskites, the brittleness can be considered as a measure of both inelasticity and ferroelasticity. The perovskites are tested for deformability using bending and indentation techniques, and an analogy in the results obtained by the two techniques is noted. Specific features of the fracture of perovskites tested by the Vickers indentation method are discussed. The crack resistance and stress-strain diagrams of the La0.8Ca0.2CoO3 composite are studied as a function of temperature. Fractographic test data are used to analyze the results obtained.  相似文献   

10.
CaO–La2O3–MgO and BaO–La2O3–MgO catalysts with different compositions have been studied for their bulk and surface properties (viz. crystal phases, surface area, acidity/acid strength distribution, basicity/base strength distribution, etc.) and catalytic activity/selectivity in the oxidative coupling of methane (OCM) at different processing conditions (reaction temperature, 700–850°C; CH4/O2 ratio in feed, 3·0, 4·0 and 8·0 and GHSV, 102000 and 204000 cm3 g−1 h−1). The surface acidity and strong basicity of La2O3–MgO are found to be increased due to the addition of a third component (CaO or BaO), depending upon its concentration in the catalyst. The addition of CaO or BaO to La2O3–MgO OCM catalyst causes a significant improvement in its performance. Both the CaO- and BaO-containing catalysts show a high activity and selectivity at 800°C, whereas, the activity and selectivity of BaO-containing catalysts at 700°C is lower than that of CaO-containing catalysts. © 1997 SCI.  相似文献   

11.
Double perovskites (A2B/B//O6) are an interesting family of materials, which are amenable to compositional modification. Recently double perovskites have shown promising thermoelectric properties especially at high temperature. In this report, we investigated the combination of two different cubic double perovskites with similar lattice constant but one (Sr2TiCoO6) showing good Seebeck coefficient and the other (Sr2TiMoO6) with high electrical conductivity. Dense ceramic samples of Sr2TiCo0.5Mo0.5O6 and La0.2Sr1.8TiCo0.5Mo0.5O6 were synthesized by solid state reaction method. Rietveld refinement of XRD data confirmed the cubic structure with Pm3¯m space group in these ceramics. Doping of Mo in Sr2TiCoO6 helped in increasing its conductivity; however Seebeck coefficient showed the n-type behavior unlike the p-type conductivity observed in Sr2TiCoO6 ceramics. Aliovalent doping of La in Sr2TiCo0.5Mo0.5O6 further increased its conductivity and Seebeck coefficient demonstrated temperature driven p-type to n-type conduction switching behavior. Conductivity mechanism of these ceramics was found to be governed by small polaron hopping model. Temperature driven p-n switching observed in the thermopower (S) measurement of La0.2Sr1.8TiCo0.5Mo0.5O6 was further explained by an analytical model.  相似文献   

12.
《Ceramics International》2023,49(7):10375-10383
Zirconia powder with good dispersion, fine particle size, and stability is used as high-quality raw material in many fields, such as ceramic materials and refractories. In this paper, the influence of lanthanum oxide (La2O3) and yttrium oxide (Y2O3) co-doped zirconia (ZrO2) on its phase transformation behavior, phase stability, and microstructure were investigated. The ball milling method is applied to fabricate different amounts of La2O3-doped yttrium oxide stabilized zirconia oxide. Then, the powder obtained from ball milling was roasted using the microwave sintering method. The samples were characterized using XRD, FT-IR, Raman, SEM and BET to determine the optimal conditions for La2O3–Y2O3 co-doped ZrO2 powder. The results showed that replacing part of Y2O3 with La2O3 increases zirconia powder's tetragonal and cubic phase, enhancing the fracture strength of the subsequent synthesized materials. At the same time, the stability of zirconia stabilized with La2O3 doping is significantly improved compared to that of Y2O3 alone. According to all analysis methods, when the doping amount is 2.8Y0.2La, the powder's phase composition, stability, particle size distribution, and dispersion degree are the best compared with other doping amounts in our study. The obtained powder has a smaller specific surface area, a lower surface energy, a smaller porosity, and a higher density. The samples under this condition can be better used in subsequent materials. The enhancement of various properties of zirconia can significantly prolong the service life of materials in practical applications.  相似文献   

13.
The thermal stability of oxynitride perovskites is very important for the fabrication of their dense ceramics. In this study, a solid solution of the oxynitride perovskite Sr1-xLaxTa1-xTixO2N was prepared via the ammonia nitridation of oxide precursors. The oxynitrides products obtained at x ≤ 0.2 and x ≥ 0.7 had tetragonal and triclinic perovskite-type structures, respectively. A neutron diffraction study on the oxynitride product obtained at x = 0.2 indicated that this tetragonal perovskite had a cis-type anion distribution similarly to SrTaO2N. The tetragonal perovskite released a part of nitrogen at approximately 1000 °C in a nitrogen atmosphere while maintaining the perovskite structure at least to 1450 °C. The oxynitride perovskites at x ≥ 0.5 gradually decomposed to a mixture of LaTiO2N, LaTiO3, La(OH)3, La2O3, TiN and TaO above 1100 °C.  相似文献   

14.
A series of cobalt and nickel based perovskite type catalysts with high specific surface area (8–20 m2 /g) was prepared by spray-freezing/freeze-drying method. The catalytic activity of all samples in methane combustion was evaluated by measuring the light-off temperature, the conversion at 823 K and the temperature of the end of the reaction. The experimental data suggest higher activity than reported in literature for similar or other perovskites, and confirm its strong dependence on the specific surface area. Among eleven tested catalysts, including seven new compositions four of which showed excellent activity, La0.66Sr0.34Ni0.3Co0.7O3 was the best performing.  相似文献   

15.
La2O3 catalysts prepared at 923 K (La2O3-LT) and 1073 K (La2O3-HT) exhibit different photoluminescence properties due to notably different concentrations of ions in position of low coordination at the surface or coordinatively unsaturated surface sites (cus). The catalyst which exhibits the higher yields of photoluminescence due to the higher concentration of cus corresponds to the one which gives the higher C2+ selectivity in the oxidative methane coupling reaction. On leave of absence from Laboratoire de Réactivité de Surface, Université Pierre et Marie Curie, URA 1106-CNRS, 75252 Paris Cedex, France.  相似文献   

16.
The layered perovskite materials were found to give the high photocatalytic activity in water splitting reaction under UV irradiation, where the electronic structure of perovskite slab constructing the layered structure (the total cation valency) was the most crucial factor to the high photocatalytic activity. Both the excessive cation valency and the layered structure were required for active photocatalysts, while the slab thickness of layered perovskites had an insignificant effect on water-splitting activity. In order to identify key variables that affected photocatalytic activity and to optimize the performance of (110) layered perovskite, La2Ti2O7 was modified by various methods. The optimum amount of loaded nickel had a great effect and the amount depended on the surface area of the perovskite phase. When an alkaline-earth element such as Ba, Sr, and Ca was doped on La2Ti2O7, the photocatalytic activity was enhanced markedly. Introduction of an alkaline hydroxide into the reaction system as an external additive enhanced the activity further showing extremely high quantum yields close to 50%.  相似文献   

17.
A [110] layered perovskite, La2Ti2O7, was a good photocatalyst under ultraviolet light in water splitting reaction. The material was synthesized with La2O3 and TiO2 as precursors by solid-state transformation. The morphology and photocatalytic activity of La2Ti2O7 depended on the preparation methods, as well as purity and morphology of the precursors. Wet-grinding of precursors in ethanol gave a product with higher crystallinity and phase purity, and thus higher photocatalytic activity, than dry-grinding without solvent. It was important to reduce the particle size of La2O3, as it usually had larger initial particle sizes than TiO2. Thus, the particle size of La2O3 had a strong effect on the crystallinity and surface area of the product La2Ti2O7. On the other hand, a severe chemical purity control was required for TiO2, while the effect of morphology was relatively small. In all cases, a high degree of crystallinity and purity of the prepared La2Ti2O7 was critical to show a high photocatalytic water-splitting activity.  相似文献   

18.
A series of samples of La–Cr–O– perovskites were designed as catalysts for diesel soot combustion. They were prepared by using co-precipitation method, at ambient temperature using ammonia followed by a hydrothermal treatment (T = 200 °C, P = 20 atm, t = 24 h). All the chromium-containing precursors were then calcined at high temperature to develop the oxide catalyst. Two phase composition 86%LaCrO3–(14%) La2CrO6 or 94%LaCrO3–6%La2O3 were formed depending on the atmosphere of calcination (oxygen or hydrogen respectively) used. Their respective BET surface areas were 1.1 and 6.5 m2 g−1. Highly crystalline, pure phase of LaCrO3 and La2CrO6 powders were also prepared, with BET area of 4 and 3 m2 g−1, respectively. The crystalline structure and properties of all samples were characterised by X-ray diffraction (XRD), using Rietveld refinement, and temperature-programmed reduction (TPR) techniques. O2-TPD measurements performed on all samples showed the presence of suprafacial, weakly chemisorbed oxygen only for LaCrO3, which contributes actively to soot combustion. TPR study performed on all catalysts showed that while pure LaCrO3 and La2O3 samples did not reduce, the biphasic catalysts showed the presence of oxygen depletion peaks characteristic of lattice oxygen mobility in the samples at ca. 665 °C. Catalytic combustion of diesel soot was studied over all catalysts. The results showed that pure LaCrO3 exhibited significant catalytic activity which was sensitively affected by the modifier La2CrO6 or La2O3.  相似文献   

19.
The behaviour of perovskites La1?xSrxCoO3 (x = 0.02?0.04) was studied at pH = 5. The oxygen evolution is controlled by the chemical reaction of adsorbed Oads. The simultaneous presence of strong oxidants increases the concentration of active intermediates and accelerates the evolution of oxygen. La1?xSrxCoO3 is a P-type semiconductor with a narrow gap (0.27–0.07 eV) and high acceptor concentration. Neither photoelectrochemical effect nor Mott-Schottky barrier were observed in electrolytes; however, rectifying effect was observed on contact of metals with low-substituted cobaltate perovskites.  相似文献   

20.
To improve their thermal stability, La0.8Sr0.2MnO3 cordierite monoliths are washcoated with mayenite, which is a novel Al-based material with the crystal structure of 12MO·7Al2O3 (M = Ca, Sr). The monoliths are characterized by means of nitrogen adsorption/desorption, scanning electron microscopy, and X-ray diffraction. Catalytic performances of the monoliths are tested for methyl methacrylate combustion. The results show that mayenite obviously improves both the physicchemical properties and the catalytic performance of the monoliths. Because mayenite improves the dispersity of La0.8Sr0.2MnO3 and also prevents the interaction between La0.8Sr0.2MnO3 and cordierite or γ-Al2O3, both crystal structure and surface morphology of La0.8Sr0.2MnO3 phase can thereby be stable on the mayenite surface even at high temperature up to 1050 °C. Under the given reaction conditions, La0.8Sr0.2MnO3 monolith washcoated with 12SrO·7Al2O3 shows the best catalytic activity for methyl methacrylate combustion among all the tested monoliths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号