首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Incorporating uncertainty in wind turbine analysis and design is very necessary based on the fact that inherent variability exists in wind turbine systems. Examples of these uncertainties include fluctuations in material properties across turbine blades, variable structure parameters and stochasticity in the inflow—which is considered to be a critical factor affecting the reliability of wind turbines. However, it has been difficult to construct a low‐dimensional yet accurate representation of the stochastic inflow, which precludes rigorous uncertainty propagation and quantification. Recently, we have developed a comprehensive data‐driven approach [called temporal–spatial decomposition (TSD)] for constructing a stochastic, low‐dimensional model that accurately represents stochastic inflow data. We leverage this approach to construct distributional forecasts of key wind turbine performance indicators. To this end, we integrated the stochastic wind model created by the TSD framework with the wind turbine solver FAST. Uncertainty propagation is performed using an adaptive sparse grid collocation approach. We investigate how the order of approximation of the stochastic model affects the quality of the predicted distribution. We observe that the probability distributions of key indicators are not necessarily Gaussian, which has implications for reliability analysis and for failure prediction. Furthermore, the distributions are sensitive to only the first few eigenmodes of the inflow wind model, which indicates that comprehensive uncertainty quantification can potentially be accomplished with moderate computational effort. The approach suggested in this paper enables seamless integration of uncertainty quantification into current deterministic codes for wind turbine simulation and has implications for the design of the next generation of wind turbines including offshore turbines. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
Recently wind energy has become one of the most important alternative energy sources and is growing at a rapid rate because of its renewability and abundancy. For the clustered wind turbines in a wind farm, significant wind power losses have been observed due to wake interactions of the air flow induced by the upstream turbines to the downstream turbines. One approach to reduce power losses caused by the wake interactions is through the optimization of wind farm layout, which determine the wind turbine positions and control strategy, which determine the wind turbine operations. In this paper, a new approach named simultaneous layout plus control optimization is developed. The effectiveness is studied by comparison to two other approaches (layout optimization and control optimization). The results of different optimizations, using both grid based and unrestricted coordinate wind farm design methods, are compared for both ideal and realistic wind conditions. Even though the simultaneous layout plus control optimization is theoretically superior to the others, it is prone to the local minima. Through the parametric study of crossover and mutation probabilities of the optimization algorithm, the results of the approach are generally satisfactory. For both simple and realistic wind conditions, the wind farm with the optimized control strategy yield 1–3 kW more power per turbine than that with the self-optimum control strategy, and the unrestricted coordinate method yield 1–2 kW more power per turbine than the grid based method.  相似文献   

4.
Modern wind turbines are complex aerodynamic, mechanical and electrical machines incorporating sophisticated control systems. Wind turbines have been erected in increasing numbers in Europe, the USA and elsewhere. In Europe, Germany and Denmark have played a particularly prominent part in developing the technology, and both countries have installed large numbers of turbines. This article is concerned with understanding the historic reliability of modern wind turbines. The prime objective of the work is to extract information from existing data so that the reliability of large wind turbines can be predicted, particularly when installed offshore in the future. The article uses data collected from the Windstats survey to analyse the reliability of wind turbine components from historic German and Danish data. Windstats data have characteristics common to practical reliability surveys; for example, the number of failures is collected for each interval but the number of turbines varies in each interval. In this article, the authors use reliability analysis methods which are not only applicable to wind turbines but relate to any repairable system. Particular care is taken to compare results from the two populations to consider the validity of the data. The main purpose of the article is to discuss the practical methods of predicting large‐wind‐turbine reliability using grouped survey data from Windstats and to show how turbine design, turbine configuration, time, weather and possibly maintenance can affect the extracted results. Copyright © 2006 John Wiley &Sons, Ltd.  相似文献   

5.
Injection of wind power into an electric grid affects the voltage quality. As the voltage quality must be within certain limits to comply with utility requirements, the effect should be assessed prior to installation. To assess the effect, knowledge about the electrical characteristics of the wind turbines is needed or else the result could easily be an inappropriate design of the grid connection. The electrical characteristics of wind turbines are manufacturer‐specific but not site‐specific. This means that, having the actual parameter values for a specific wind turbine, the expected impact of the wind turbine type on voltage quality when deployed at a specific site, possibly as a group of wind turbines, can be calculated. The methodology for this is explained and illustrated by case studies considering a 5 × 750 kW wind farm on a 22 kV distribution feeder. The detailed analysis suggests that the wind farm capacity can be operated at the grid without causing unacceptable voltage quality. For comparison, a simplified design criterion is considered assuming that the wind farm is only allowed to cause a voltage increment of 1%. According to this criterion, only a very limited wind power capacity would be allowed. Measurements confirm, however, the suggestion of the detailed analysis, and it is concluded that a simplified design criterion such as the ‘1% rule’ should not be used for dimensioning the grid connection of wind farms. Rather, this article suggests a systematic approach including assessment of slow voltage variations, flicker, voltage dips and harmonics, possibly supported by more detailed analyses, e.g. system stability if the wind farm is large or the grid is very weak, and impact on grid frequency in systems where wind power covers a high fraction of the load, i.e. most relevant for isolated systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
Fault ride-through capability of DFIG wind turbines   总被引:2,自引:0,他引:2  
This paper concentrates on the fault ride-through capability of doubly fed induction generator (DFIG) wind turbines. The main attention in the paper is, therefore, drawn to the control of the DFIG wind turbine and of its power converter and to the ability to protect itself without disconnection during grid faults. The paper provides also an overview on the interaction between variable-speed DFIG wind turbines and the power system subjected to disturbances, such as short circuit faults. The dynamic model of DFIG wind turbine includes models for both mechanical components as well as for all electrical components, controllers and for the protection device of DFIG necessary during grid faults. The viewpoint of the paper is to carry out different simulations to provide insight and understanding of the grid fault impact on both DFIG wind turbines and on the power system itself. The dynamic behaviour of DFIG wind turbines during grid faults is simulated and assessed by using a transmission power system generic model developed and delivered by the Danish Transmission System Operator Energinet.dk in the power system simulation toolbox PowerFactory DIgSILENT. The data for the wind turbines are not linked to a specific manufacturer, but are representative for the turbine and generator type used in variable-speed DFIG wind turbines with pitch control.  相似文献   

7.
As a result of increasing wind farms penetration in power systems, the wind farms begin to influence power system, and thus the modelling of wind farms has become an interesting research topic. Nowadays, doubly fed induction generator based on wind turbine is the most widely used technology for wind farms due to its main advantages such as high-energy efficiency and controllability, and improved power quality. When the impact of a wind farm on power systems is studied, the behavior of the wind farm at the point common coupling to grid can be represented by an equivalent model derived from the aggregation of wind turbines into an equivalent wind turbine, instead of the complete model including the modelling of all the wind turbines. In this paper, a new equivalent model of wind farms with doubly fed induction generator wind turbines is proposed to represent the collective response of the wind farm by one single equivalent wind turbine, even although the aggregated wind turbines operate receiving different incoming winds. The effectiveness of the equivalent model to represent the collective response of the wind farm is demonstrated by comparing the simulation results of equivalent and complete models both during normal operation and grid disturbances.  相似文献   

8.
并网双馈风电机组低电压穿越能力研究   总被引:5,自引:1,他引:4  
详细分析了双馈风电机组LVRT功能的实现原理,并在电力系统仿真分析软件PSASP中建立双馈风电机组的LVRT功能模型,采用地理接线图直观地表示风电场外部系统发生短路故障瞬间对风电机组端电压的影响.并以我国某地区电网为例来分析在风电场接入方式不同的情况下系统短路故障对风电机组的影响。根据仿真结果给出风电机组LVRT能力的最低电压限值要求。最后提出了利用串联制动电阻来提高风电机组的LVRT能力的新方法。分析结果表明,串联制动电阻能够可观地提高风电机组的低电压穿越能力。具有较高LVRT能力的风电机组。可以节省一定的投资费用,在一定程度上降低了风电的上网电价。  相似文献   

9.
The stability of the electrical grid depends on enough generators being able to provide appropriate responses to sudden losses in generation capacity, increases in power demand or similar events. Within the United States, wind turbines largely do not provide such generation support, which has been acceptable because the penetration of wind energy into the grid has been relatively low. However, frequency support capabilities may need to be built into future generations of wind turbines to enable high penetration levels over approximately 20%. In this paper, we describe control strategies that can enable power reserve by leaving some wind energy uncaptured. Our focus is on the control strategies used by an operating turbine, where the turbine is asked to track a power reference signal supplied by the wind farm operator. We compare the strategies in terms of their control performance as well as their effects on the turbine itself, such as the possibility for increased loads on turbine components. It is assumed that the wind farm operator has access to the necessary grid information to generate the power reference provided to the turbine, and we do not simulate the electrical interaction between the turbine and the utility grid. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
This paper investigates an analytical approach for the reliability modeling of doubly fed induction generator (DFIG) wind turbines. At present, to the best of the authors’ knowledge, wind speed and wind turbine generator outage have not been addressed simultaneously. In this paper, a novel methodology based on the Weibull- Markov method is proposed for evaluating the probabilistic reliability of the bulk electric power systems, including DFIG wind turbines, considering wind speed and wind turbine generator outage. The proposed model is presented in terms of appropriate wind speed modeling as well as capacity outage probability table (COPT), considering component failures of the wind turbine generators. Based on the proposed method, the COPT of the wind farm has been developed and utilized on the IEEE RBTS to estimate the well-known reliability and sensitive indices. The simulation results reveal the importance of inclusion of wind turbine generator outage as well as wind speed in the reliability assessment of the wind farms. Moreover, the proposed method reduces the complexity of using analytical methods and provides an accurate reliability model for the wind turbines. Furthermore, several case studies are considered to demonstrate the effectiveness of the proposed method in practical applications.  相似文献   

11.
Variable-speed wind turbines are able to adapt to low wind speeds and therefore have greater efficiency than fixed-speed turbines during partial-load operation. Unfortunately, the high cost and low reliability of the electronics that enable variation in speed have discouraged this mode of operation for distributed wind turbines. Alternatively, a Variable-Ratio Gearbox (VRG) can be integrated into the fixed-speed wind turbine to facilitate operation with a discrete set of variable speeds that boost efficiency. The VRG concept is based upon mature technology taken from the automotive industry and is characterized by low cost and high reliability. In this paper, a model-based design methodology is introduced to study the performance gain of integrating a VRG into a fixed-speed stall-regulated wind turbine system. The results demonstrate how this device can improve the efficiency of the fixed-speed turbine in the partial-load region and the potential to use the VRG to limit power in the full-load region where pitch control is often used.  相似文献   

12.
The emphasis in this article is on the impact of fault ride‐through requirements on wind turbines structural loads. Nowadays, this aspect is a matter of high priority as wind turbines are required more and more to act as active components in the grid, i.e. to support the grid even during grid faults. This article proposes a computer approach for the quantification of the wind turbines structural loads caused by the fault ride‐through grid requirements. This approach, exemplified for the case of a 2MW active stall wind turbine, relies on the combination of knowledge from complimentary simulation tools, which have expertise in different specialized wind turbines design areas. Two complimentary simulation tools are considered i.e. the detailed power system simulation tool PowerFactory from DIgSILENT and the advanced aeroelastic computer code HAWC2, in order to assess of the dynamic response of wind turbines to grid faults. These two tools are coupled sequently in an offline approach, in order to achieve a thorough insight both into the structural as well as the electrical wind turbine response during grid faults. The impact of grid requirements on wind turbines structural loads is quantified by performing a rainflow and a statistical analysis for fatigue and ultimate structural loads, respectively. Two cases are compared i.e. one where the turbine is immediately disconnected from the grid when a grid fault occurs and one where the turbine is equipped with a fault ride‐through controller and therefore it is able to remain connected to the grid during the grid fault. Copyright copy; 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The extensive deployment of megawatt-scale wind turbines is bringing more challenges to the safety and stability of electric grid than ever before. This is not only because of the unstable wind over time but the increased risk of power quality pollution by defective wind turbines particularly when the turbines today are still experiencing various reliability issues. To prevent the power quality pollution by defective turbines, a new power quality monitoring technique dedicated for individual wind turbines is developed in this paper, so that the quality of the power generated by an individual turbine can be monitored by the wind turbine condition monitoring system. Through simulated and physical experiments on a specially designed test rig, some encouraging results have been achieved. It has been shown that the proposed technique is not only valid for monitoring the power quality of an individual wind turbine, but helpful in detecting the mechanical and electrical faults occurring in the wind turbines.  相似文献   

14.
In the present paper, several types of collected data were employed to analyse the causes of turbines shutdown in a grid-connected wind farm. Although the average availability of the considered wind farm exceeds 96%, the individual availability of some turbines does not exceed 92%. In this context, the present paper introduces a novel approach of understanding the turbine standstill and availability calculation. This approach is based on a variation of monthly energy production to weight the shutdown time including the maintenance and fault hours. The calm hours in summer are 60% less than the average calm time for the considered wind farm. The distribution of inoperative hours reveals a 300% difference between the original and weighed times of downtime. On the other hand, weighed times are used to assess the impact of various faults causing turbines shutdown. The frequency distribution of the faults has shown that 42% of turbine shutdowns are caused by network disturbances, 70% of them are attributed to grid disconnections. Finally, the time distribution of the network faults is investigated to illustrate their impact on the turbine standstill.  相似文献   

15.
Surya Santoso  Ha Thu Le   《Renewable Energy》2007,32(14):2436-2452
One critical task in any wind power interconnection study involves the modelling of wind turbines. This paper provides the most basic yet comprehensive time–domain wind turbine model upon which more sophisticated models along with their power and speed control mechanisms, can be developed. For this reason, this paper concentrates on the modelling of a fixed-speed wind turbine. The model includes turbine's aerodynamic, mechanical, and electrical components. Data for the rotor, drive-train, and electrical generator are given to allow replication of the model in its entirety. Each of the component-blocks of the wind turbine is modelled separately so that one can easily expand the model to simulate variable-speed wind turbines or customise the model to suit their needs. Then, an aggregate wind turbine model, or wind farm, is developed. This is followed by four case studies to demonstrate how the models can be used to study wind turbine operation and power grid integration issues. Results obtained from the case studies show that the models perform as expected.  相似文献   

16.
Wind turbine manufacturers are required by transmission system operators for fault ride‐through capability as the penetration of wind energy in the electrical systems grows. For this reason, testing and modeling of wind turbines and wind farms are required by the national grid codes to verify the fulfillment of this capability. Therefore, wind turbine models are required to simulate the evolution of voltage, current, reactive and active power during faults. The simulation results obtained from these wind turbine models are used for verification, validation and certification against the real wind turbines measurement results, although evolution of electrical variables during the fault and its clearance is not easy to fulfill. The purpose of this paper is to show the different stages involved in the fulfillment of the procedure of operation for fault ride‐through capability of the Spanish national grid code (PO 12.3) and the ‘procedure for verification, validation and certification of the requirements of the PO 12.3 on the response of wind farms in the event of voltage dips’. The process has been applied to a wind farm composed of Gamesa G52 wind turbines, and the results obtained are presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
高辉 《风能》2012,(7):66-72
海上风电的快速发展极大地促进了大容量风电机组的商业化。大容量风电机组的设计制造应用了许多新技术、新材料和新工艺,引领着未来风电机组技术的发展方向。本文通过对国内外十余种大容量风电机组技术特点的研究,归纳总结了风电机组技术发展的新趋势,以期为我国风电机组的研发设计工作提供参考。  相似文献   

18.
海上风机基础是海上风电场风机的重要支撑结构,也是保证风机正常运行25年的重要结构。海上风机基础具有设计寿命长、投资大、检测和维修难度高的特点,因此必须采取有效的防腐措施保证其能长效安全地服役。结合南海某海上风电工程项目,详尽地研究和论述了海上风机基础阴极保护的关键环节、合理有效的设计和布置方案,对阴极保护技术在海上风电领域的设计与应用具有一定的指导意义。  相似文献   

19.
One of the main concerns in the grid integration of large wind farms is their ability to behave as active controllable components in the power system. This article presents the design of a new integrated power control system for a wind farm made up exclusively of active stall wind turbines with AC grid connection. The designed control system has the task of enabling such a wind farm to provide the best grid support. It is based on two control levels: a supervisory control level, which controls the power production of the whole farm by sending out reference signals to each individual wind turbine, and a local control level, which ensures that the reference power signals at the wind turbine level are reached. The ability of active stall wind farms with AC grid connection to control the power production to the reference power ordered by the operators is assessed and discussed by means of simulations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Individual wind turbines in a wind farm typically operate to maximize their performance with no consideration of the impact of wake effects on downstream turbines. There is potential to increase power and reduce structural loads within a wind farm by properly coordinating the turbines. To effectively design and analyze coordinated wind turbine controllers requires control‐oriented turbine wake models of sufficient accuracy. This paper focuses on constructing such a model from experiments. The experiments were conducted to better understand the wake interaction and impact on voltage production in a three‐turbine array. The upstream turbine operating condition was modulated in time, and the dynamic impact on the downstream turbine was recorded through the voltage output time signal. The flow dynamics observed in the experiments were used to improve a static wake model often used in the literature for wind farm control. These experiments were performed in the atmospheric boundary layer wind tunnel at the Saint Anthony Falls Laboratory at the University of Minnesota using particle image velocimetry for flow field analysis and turbine voltage modulation to capture the physical evolution in addition to the dynamics of turbine wake interactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号