首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We report on a rapid method for reagentless identification and discrimination of single bacterial cells in aqueous solutions using a combination of laser tweezers and confocal Raman spectroscopy (LTRS). The optical trapping enables capturing of individual bacteria in aqueous solution in the focus of the laser beam and levitating the captured cell well off the cover plate, thus maximizing the excitation and collection of Raman scattering from the cell and minimizing the unwanted background from the cover plate and environment. Raman spectral patterns excited by a near-infrared laser beam provide intrinsic molecular information for reagentless analysis of the optically isolated bacterium. In our experiments, six species of bacteria were used to demonstrate the capability of the confocal LTRS in the identification and discrimination between the diverse bacterial species at various growth conditions. We show that synchronized bacterial cells can be well-discriminated among the six species using principal component analyses (PCA). Unsynchronized bacterial cells that are cultured at stationary phases can also be well-discriminated by the PCA, as well as by a hierarchical cluster analysis (HCA) of their Raman spectra. We also show that unsynchronized bacteria selected from random growth phases can be classified with the help of a generalized discriminant analysis (GDA). These findings demonstrate that the LTRS may find valuable applications in rapid sensing of microbial cells in diverse aqueous media.  相似文献   

2.
A series of semicrystalline polymers has been prepared through morphological control. Each of these has an identical refractive index but a different, well-defined, scattering behavior. From existing geometrical optical theories of confocal Raman spectroscopy, these materials should behave identically. Initially, the extent of scattering in each system was assessed quantitatively, from the near-infrared through the visible wavelength range, by UV/visible spectroscopy. The effect of optical scattering on the variation of intensity of the Raman scattered radiation with subsurface position was then examined in all four materials; the effect of surface roughness was also considered in the highest clarity system. Where surface effects are removed through careful sample preparation and the materials are interrogated using identical optical systems to mitigate against the impact of refractive index mismatch and other optical effects, the Raman response is strongly affected by the scattering characteristics of each material. A simple empirical relationship has been determined that adequately described all our specimens.  相似文献   

3.
Raman spectroscopic markers have been determined for fatigue-related microdamage in bovine bone. Microdamage was induced using a cyclic fatigue loading regime. After loading, the specimens were stained en-bloc with basic fuchsin to facilitate damage visualization and differentiate fatigue-induced damage from cracks generated during subsequent histological sectioning. Bone tissue specimens were examined by light microscopy and hyperspectral near-infrared Raman imaging microscopy. Three regions were defined-tissue with no visible damage, tissue with microcracks, and tissue with diffuse damage. Raman transects, lines of 150-200 Raman spectra, were used for initial tissue surveys. Exploratory factor analysis of the transect Raman spectra has identified spectroscopically distinct chemical microstructures of the bone specimens that correlate with damage. In selected regions of damage, full hyperspectral Raman images were obtained with 1.4-microm spatial resolution. In regions of undamaged tissue, the phosphate nu1 band is found at 957 cm(-1), as expected for the carbonated hydroxyapatic bone mineral. However, in regions of visible microdamage, an additional phosphate nu1 band is observed at 963 cm(-1) and interpreted as a more stoichiometric, less carbonated mineral species. Raman imaging confirms the qualitative relationship between the Raman spectral signature of bone mineral and the type of microdamage in bovine bone. Two tentative explanations for the presence of less carbonated phosphate in damaged regions are proposed.  相似文献   

4.
Qu JY  Wilson BC  Suria D 《Applied optics》1999,38(25):5491-5498
Our primary goal in this study is to demonstrate that near-infrared Raman spectroscopy is feasible as a rapid and reagentless analytic method for clinical diagnostics. Raman spectra were collected on human sera by use of a 785-nm excitation laser and a single-stage holographic spectrometer. A partial-least-squares method was used to predict the analyte concentrations of interest. The prediction errors of total protein, albumin, triglyceride, and glucose in human sera ranged from 1.0% to 10%, which are highly acceptable for clinical diagnosis, of their mean physiological levels. For investigating the potential application of near-infrared Raman spectroscopy in screening of therapeutical drugs and substances of abuse the concentrations of acetaminophen, ethanol, and codeine in water solution were measured in the same fashion. The errors of the Raman tests for acetaminophen and ethanol are lower than their toxic levels in human serum, and the sensitivity for detection of codeine fails to reach its toxic level.  相似文献   

5.
Two different nondestructive spectroscopy methods based on near-infrared (NIR) and Fourier transform (FT) Raman spectroscopy were developed for the determination of ticlopidine-hydrochloride (TCL) in pharmaceutical formulations and the results were compared to those obtained by high-performance liquid chromatography (HPLC). An NIR assay was performed by reflectance over the 850-1700 nm region using a partial least squares (PLS) prediction model, while the absolute FT-Raman intensity of TCL's most intense vibration was used for constructing the calibration curve. For both methodologies the spectra were obtained from the as-received film-coated tablets of TCL. The two quantitative techniques were built using five "manual compressed" tablets containing different concentrations and validated by evaluating the calibration model as well as the accuracy and precision. The models were applied to commercial preparations (Ticlid). The results were compared to those obtained from the application of HPLC using the methodology described by "Sanofi Research Department" and were found to be in excellent agreement, proving that NIR, using fiber-optic probes, and FT-Raman spectroscopy can be used for the fast and reliable determination of the major component in pharmaceutical analysis.  相似文献   

6.
Spectroscopic methods of urinalysis offer several advantages over chemical methods, including less sample contact and higher information content. In particular, urine creatinine has been the subject of several spectroscopic studies. We report the first use of Raman spectroscopy to measure creatinine concentrations in unaltered urine samples from a multipatient population. Using near-infrared excitation and a hybrid linear analysis calibration method, a root mean squared error of cross-validation (RMSECV) of 4.9 mg/dL was obtained. The error in the reference chemical method was 1.1 mg/dL. This result shows that the Raman spectroscopy can measure creatinine at clinical levels even in the presence of patient-to-patient variations. Because most assays in urine require creatinine concentration in order to correct for fluctuations in water content, measurement of creatinine is the first step towards more extensive Raman-based urinalysis.  相似文献   

7.
8.
The ideal quality control method for pharmaceutical products should be capable of rapid nondestructive testing of intact tablets or capsules. Raman spectroscopy using near-infrared excitation is shown to be capable of obtaining useful spectral data directly from drug formulations in gel capsules and from the gel capsules inside blister packs. The Raman data collected from the capsules inside blister packs containing 0-100 mg of the active ingredient (bucindolol), when coupled with multivariate calibration, resulted in a calibration SEP of 3.36 mg. The largest source of error was found to be due to sample inhomogeneity. Even so, the method is shown to have significant potential as a rapid nondestructive quality control method for pharmaceutical samples.  相似文献   

9.
We have constructed a 1064 nm deep near-infrared (NIR) excited multichannel Raman microspectrometer using an InP/InGaAsP multichannel detector. This microspectrometer achieves high sensitivity suitable for in vivo measurements of single living cells with lateral resolution of 0.7 μm and depth resolution of 3.1 μm. It has been applied to the structural analysis of living cyanobacterial cells, well-known model organisms for photosynthesis research, which are too photolabile to be measured with visible laser excitation. High signal-to-noise ratio (S/N) Raman spectra have been obtained from carotenoid, chlorophyll α, and phycocyanin in a single living cyanobacterial cell with no appreciable interference from autofluorescence or photodamage. Sub-micrometer mapping of Raman intensities provides clear distribution images of the three pigments inside the cell.  相似文献   

10.
Raman spectroscopy has been shown to have the potential for providing differential diagnosis in the cervix with high sensitivity and specificity in previous studies. The research presented here further evaluates the potential of near-infrared Raman spectroscopy to detect cervical dysplasia in a clinical setting. Using a portable system, Raman spectra were collected from the cervix of 79 patients using clinically feasible integration times (5 seconds on most patients). Multiple Raman measurements were taken from colposcopically normal and abnormal areas prior to the excision of tissue. Data were processed to extract Raman spectra from measured signal, which includes fluorescence and noise. The resulting spectra were correlated with the corresponding histopathologic diagnosis to determine empirical differences between different diagnostic categories. Using histology as the gold standard, logistic regression discrimination algorithms were developed to distinguish between normal ectocervix, squamous metaplasia, and high-grade dysplasia using independent training and validation sets of data. An unbiased estimate of the accuracy of the model indicates that Raman spectroscopy can distinguish between high-grade dysplasia and benign tissue with sensitivity of 89% and specificity of 81%, while colposcopy in expert hands was able to discriminate with a sensitivity and specificity of 87% and 72%.  相似文献   

11.
Cyanogenic glucosides were studied using Raman spectroscopy. Spectra of the crystal forms of linamarin, linustatin, neolinustatin, amygdalin, sambunigrin, and dhurrin were obtained using a Raman spectrograph microscope equipped with a 532 nm laser. The position of the signal from the C identical with N triple bond of the cyanohydrin group was influenced by the nature of the side group and was above 2240 cm(-1) for the three cyanogenic glucosides that contain a neighboring aromatic ring, and below or partially below 2240 cm(-1) for the non-aromatic cyanoglucosides. Signals from the CN bond of linamarin/lotaustralin in leaves and roots from a medium cyanogenic cassava variety were obtained in situ using a Fourier transform near-infrared (FT-NIR) Raman interferometer with a 1064 nm laser, but the signal was very weak and difficult to obtain. A spectrum containing a signal from the CN bond of dhurrin in a freeze-dried sorghum leaf was also obtained using this instrument. Surface-enhanced Raman Spectroscopy (SERS) was demonstrated to be a more sensitive method that enabled determination of the cyanogenic potential of plant tissue. The SERS method was optimized by flow injection (FI) using a colloidal gold dispersion as effluent. Potential problems and pitfalls of the method are discussed.  相似文献   

12.
Raman spectroscopy has promising potential for future Mars missions as a non-contact detection technique for characterizing organic material and mineralogy. Such a capability will be useful for selecting samples for detailed analysis on a rover and for selecting samples for return to Earth. Stromatolites are important evidence for the earliest life on Earth and are promising targets for Mars investigations. Although constructed by microorganisms, stromatolites are organo-sedimentary structures that can be large enough to be discovered and investigated by a Mars rover. In this paper, we report the Raman spectroscopic investigations of the carbonate mineralogy and organic layering in a Precambrian (~1.5 Gyr old) stromatolite from the Crystal Spring Formation of Southern California. Ultraviolet (UV: 266 nm), visible (514 nm, 633 nm), and near-infrared (NIR: 785 nm, 1064 nm) Raman spectra are presented. We conclude that 1064 nm excitation is the optimal excitation wavelength for avoiding intrinsic fluorescence and detecting organic carbon within the carbonate matrix. Our results confirm that NIR Raman spectroscopy has important applications for future Mars missions.  相似文献   

13.
Raman spectroscopy is often considered a nondestructive analytical technique; however, this is not always the case. The 300-mW 785-nm near-infrared (NIR) laser source used with many commercially available instruments has sufficient power to burn samples. This destructive potential is of special concern if the sample is irreplaceable (e.g., fine art, forensic evidence, or for in vivo medical diagnostics) or a hazardous energetic material (explosive or pyrophoric samples). This study quantifies the heat resulting from illuminating an extensive color array with a 785-nm NIR laser and relates these values to the hazards associated with Raman analysis. In general, darker colors were found to be more problematic. Since visible colors are not ideally correlated with absorptive characteristics at 785 nm, predictions based on thermography are not perfect; however, this approximation gives a useful method for predicting the thermal response of unknown samples to NIR exposure. Additionally, experimental studies evaluated the analysis of flammable organic solvents, propellants, military explosives, mixtures containing military explosives, shock-sensitive explosives, and gunpowders (i.e., smokeless, black, and Pyrodex powders). Safety guidelines for analysis are presented.  相似文献   

14.
Raman microscopic analysis of single microbial cells   总被引:3,自引:0,他引:3  
We demonstrate the utility of the Raman confocal microscope to generate a spectral profile from a single microbial cell and the use of this approach to differentiate bacterial species. In general, profiles from different bacterial taxa shared similar peaks, but the relative abundances of these components varied between different species. The use of multivariate methods subsequently allowed taxa discrimination. Further investigations revealed that the single-cell spectra could be used to differentiate between growth phases of a single species, but these differences did not obscure the overall interspecies discrimination. Finally, we tested the efficacy of the method as a means to identify cells responsible for the uptake of a specific substrate. A single strain was grown in media containing incrementally varying ratios of (13)C(6) to (12)C(6) glucose, and it was found that (13)C incorporation shifted characteristic peaks to lower wavenumbers. These findings suggest that Raman microscopy has significant potential for studies requiring the taxonomic identity and functioning of single microbial cells to be determined.  相似文献   

15.
The past decade has seen an increased interest in the application of several physicochemical analytical techniques for the rapid detection and identification of microorganisms. We report the development of UV resonance Raman (UVRR) spectroscopy for the reproducible acquisition of information rich Raman fingerprints from endospore-forming bacteria belonging to the genera Bacillus and Brevibacillus. UVRR was conducted at 244 nm, and spectra were collected in typically 60 s. Cluster analyses of these spectra showed that UVRR spectroscopy could be used to discriminate between these microorganisms to species level, and the clustering pattern from this phenotypic classification was highly congruent with phylogenetic trees constructed from 16S rDNA sequence analysis. Therefore, we conclude that UVRR spectroscopy when coupled with chemometrics constitutes a powerful approach to the characterization and speciation of microorganisms.  相似文献   

16.
The use of normal Raman spectroscopy and surface-enhanced Raman spectroscopy (SERS) of cationic-coated silver and gold substrates to detect polyatomic anions in aqueous environments is examined. For normal Raman spectroscopy, using near-infrared excitation, linear concentration responses were observed. Detection limits varied from 84 ppm for perchlorate to 2600 ppm for phosphate. In general, detection limits in the ppb to ppm concentration range for the polyatomic anions were achieved using cationic-coated SERS substrates. Adsorption of the polyatomic anions on the cationic-coated SERS substrates was described by a Frumkin isotherm. The SERS technique could not be used to detect dichromate, as this anion reacted with the coatings to form thiol esters. A competitive complexation method was used to evaluate the interaction of chloride ion with the cationic coatings. Hydrogen bonding and pi-pi interactions play significant roles in the selectivity of the cationic coatings.  相似文献   

17.
Spectroscopic techniques such as Raman, mid-infrared (MIR), and near-infrared (NIR) have become indispensable analytical tools for rapid chemical quality control and process monitoring. This paper presents the application of in-line Fourier transform near-infrared (FT-NIR) spectroscopy, Raman spectroscopy, and ultrasound transit time measurements for in-line monitoring of the composition of a series of high-density polyethylene (HDPE)/polypropylene (PP) blends during single-screw extrusion. Melt composition was determined by employing univariate analysis of the ultrasound transit time data and partial least squares (PLS) multivariate analysis of the data from both spectroscopic techniques. Each analytical technique was determined to be highly sensitive to changes in melt composition, allowing accurate prediction of blend content to within +/- 1% w/w (1sigma) during monitoring under fixed extrusion conditions. FT-NIR was determined to be the most sensitive of the three techniques to changes in melt composition. A four-factor PLS model of the NIR blend spectra allowed determination of melt content with a standard prediction error of +/- 0.30% w/w (1sigma). However, the NIR transmission probes employed for analysis were invasive into the melt stream, whereas the single probes adopted for Raman and ultrasound analysis were noninvasive, making these two techniques more versatile. All three measurement techniques were robust to the high temperatures and pressures experienced during melt extrusion, demonstrating each system's suitability for process monitoring and control.  相似文献   

18.
The purpose of this study was to investigate the dehydration of piroxicam monohydrate (PRXMH) in compacts using terahertz pulsed spectroscopy (TPS), Raman spectroscopy, and reflectance near-infrared (NIR) spectroscopy. Compacts were prepared by using PRXMH and poly(tetrafluoro)ethylene powders and combining them in three different manners before compression to produce compacts in which the PRXMH was dispersed throughout the compact, deposited on one face of the compact, or included as a layer within the compact. TPS was a suitable technique to assess the effect of sample preparation on dehydration, whereas Raman and NIR spectroscopy were limited by their sampling depth and the interference of the polymer matrix. TPS revealed that the dehydration behavior depended largely on the compact preparation method. Non-isothermal dehydration was investigated with all three spectroscopic techniques, combined with principal component analysis (PCA) on samples where the PRXMH was deposited on one face of the compact. In addition, variable temperature X-ray powder diffractometry (VT-XRPD) was used to verify the transformation from PRXMH to anhydrous PRX form I, while thermogravimetric analysis (TGA) was used to monitor the water loss. All three spectroscopic techniques allowed in situ monitoring of the dehydration from the surface layers of the compacts. TPS and Raman spectroscopy detected structural changes of the crystal, while NIR spectroscopy was more sensitive to water loss. PCA of the TPS, Raman spectroscopy, and XRPD data revealed similar dehydration profiles. In contrast, the NIR spectroscopy profile was more similar to the TGA results. The spectroscopic techniques were more suitable than slower techniques such as VT-XRPD for monitoring rapid structural changes that occurred during the dehydration.  相似文献   

19.
The single-fibre pull-out test has been analysed for Kevlar-49 fibres in a cold-cured epoxy resin by using both a conventional pull-out experiment and Raman spectroscopy. The interfacial shear strength (ISS) has been estimated from the pull-out force for fibres with a range of embedded lengths. Raman spectroscopy has been used to analyse the distribution of fibre strain in the pull-out test by mapping the variation of strain along an aramid fibre undergoing pull-out from the epoxy resin matrix. At low strains the behaviour follows elastic shear-lag analysis but, as the fibre strain is increased, debonding takes place at the fibre/matrix interface. It is found that this debond propagates along the interface until the entire fibre is debonded. The fibre is then pulled out of the resin matrix by a frictional pull-out process. It is shown that the conventional pull-out experiment produces only an apparent value of ISS and that through a partial-debonding model it is possible to use the interfacial parameters obtained from the Raman analysis to predict the data from the conventional test.  相似文献   

20.
The interfaces between high-modulus PAN-(T50) and mesophase pitch-based (P55) carbon fibres and an epoxy matrix have been studied by using the conventional fragmentation test in conjunction with polarised-light optical microscopy. Raman spectroscopy has also been used to follow stress transfer from the matrix to the fibres for the same fragmentation geometries. The level of fibre/matrix adhesion and mechanisms by which the stress is transfered from the matrix to the fibres has been determined from both the stress birefringence patterns and strain-induced Raman band shifts in the fibres. The values of interfacial shear strength have been determined by means of both the conventional analysis and the Raman technique. It is found that the Raman method gives a much more detailed picture of stress transfer in the test specimens and that the two methods give somewhat different values of the interfacial shear strength. The values of interfacial shear stress have been discussed with respect to fibre surface energy, surface chemistry and surface morphology. It was found that the surface chemical functional groups appear to have no direct correlation with interfacial shear strength. Furthermore, it appears that mechanical interlocking due to surface roughness could contribute to the higher values of interfacial shear strength determined for the PAN-based fibre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号