首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Utilization of internal ribosome entry segment (IRES) structures in the 5' noncoding region (5'NCR) of picornavirus RNAs for initiation of translation requires a number of host cell factors whose distribution may vary in different cells and whose requirement may vary for different picornaviruses. We have examined the requirement of the cellular protein poly(rC) binding protein 2 (PCBP2) for hepatitis A virus (HAV) RNA translation. PCBP2 has recently been identified as a factor required for translation and replication of poliovirus (PV) RNA. PCBP2 was shown to be present in FRhK-4 cells, which are permissive for growth of HAV, as it is in HeLa cells, which support translation of HAV RNA but which have not been reported to host replication of the virus. Competition RNA mobility shift assays showed that the 5'NCR of HAV RNA competed for binding of PCBP2 with a probe representing stem-loop IV of the PV 5'NCR. The binding site on HAV RNA was mapped to nucleotides 1 to 157, which includes a pyrimidine-rich sequence. HeLa cell extracts that had been depleted of PCBP2 by passage over a PV stem-loop IV RNA affinity column supported only low levels of HAV RNA translation. Translation activity was restored upon addition of recombinant PCBP2 to the depleted extract. Removal of the 5'-terminal 138 nucleotides of the HAV RNA, or removal of the entire IRES, eliminated the dependence of HAV RNA translation on PCBP2.  相似文献   

2.
The capped RNA primers required for the initiation of influenza virus mRNA synthesis are produced by the viral polymerase itself, which consists of three proteins PB1, PB2 and PA. Production of primers is activated only when the 5'- and 3'-terminal sequences of virion RNA (vRNA) bind sequentially to the polymerase, indicating that vRNA molecules function not only as templates for mRNA synthesis but also as essential cofactors which activate catalytic functions. Using thio U-substituted RNA and UV crosslinking, we demonstrate that the 5' and 3' sequences of vRNA bind to different amino acid sequences in the same protein subunit, the PB1 protein. Mutagenesis experiments proved that these two amino acid sequences constitute the functional RNA-binding sites. The 5' sequence of vRNA binds to an amino acid sequence centered around two arginine residues at positions 571 and 572, causing an allosteric alteration which activates two new functions of the polymerase complex. In addition to the PB2 protein subunit acquiring the ability to bind 5'-capped ends of RNAs, the PB1 protein itself acquires the ability to bind the 3' sequence of vRNA, via a ribonucleoprotein 1 (RNP1)-like motif, amino acids 249-256, which contains two phenylalanine residues required for binding. Binding to this site induces a second allosteric alteration which results in the activation of the endonuclease that produces the capped RNA primers needed for mRNA synthesis. Hence, the PB1 protein plays a central role in the catalytic activity of the viral polymerase, not only in the catalysis of RNA-chain elongation but also in the activation of the enzyme activities that produce capped RNA primers.  相似文献   

3.
The 5' untranslated region of poliovirus RNA has been reported to possess two functional elements: (i) the 5' proximal 88 nucleotides form a cloverleaf structure implicated in positive-strand RNA synthesis during viral replication, and (ii) nucleotides 134 to at least 556 function as a highly structured internal ribosome entry segment (IRES) during cap-independent, internal initiation of translation. We show here that the IRES itself is bifunctional and contains sequences necessary for viral RNA synthesis per se. For this purpose, we used a dicistronic poliovirus RNA in which the translation of the viral non-structural (replication) proteins is uncoupled from the poliovirus IRES. In this system, RNA synthesis is readily detectable in transfected cells, even when the poliovirus IRES is inactivated by point mutation. However, deletion of the major part of the poliovirus IRES renders viral-specific RNA synthesis undetectable. Using the same system, we show that a three nucleotide deletion at position 500 in the 5' untranslated region drastically affects both translation efficiency and RNA synthesis. Furthermore, disruption of the secondary structure of the IRES around nucleotide 343 has minimal effects on IRES function, but dramatically reduces viral RNA replication. Taken together, these results provide direct evidence that sequences essential for viral RNA synthesis are located in the 3' region of the poliovirus IRES.  相似文献   

4.
Hepatitis C virus (HCV) is a positive-strand RNA virus whose genome is replicated by a direct RNA-to-RNA mechanism. Initiation of negative-strand RNA synthesis is believed to proceed from the 3' end of the genomic RNA. The high conservation of the 3' terminus suggests that this region directs the assembly of proteins required for the initiation of RNA replication. We sought to determine whether host proteins bind specifically to this RNA structure. We observed specific binding of cellular proteins to labeled 3'-terminal RNA by mobility shift analysis. UV crosslinking revealed that the predominant 3'-terminal RNA-binding protein migrates as a single, 60-kDa species that can be precipitated by monoclonal antibodies directed against heterogeneous nuclear ribonucleoprotein I, also called polypyrimidine tract-binding protein (hnRNP-I/PTB), a protein previously shown to bind to the 5' internal ribosome entry site (IRES) of the HCV genome. Purified hnRNP-I/PTB also bound selectively to the 3' end of the HCV genome. hnRNP-I/PTB binding requires the upstream two stem-loop structures (SL2 and SL3) but not the most 3'-terminal stem-loop (SL1). Minor alteration of either the stem or loop sequences in SL2 or SL3 severely compromised hnRNP-I/PTB binding, suggesting extremely tight RNA structural requirements for interaction with this protein. hnRNP-I/PTB does not bind to either end of the antigenomic RNA strand and binds to the 5' IRES element of the genome at least 10-fold less avidly than to the 3' terminus. The strong, selective, and preferential binding of hnRNP-I/PTB to the 3' end of the HCV genome suggests that it may be recruited to participate in viral replication, helping to direct initiation of negative-strand RNA synthesis, stabilize the viral genome, and/or regulate encapsidation of genomic RNA.  相似文献   

5.
The 3' noncoding region (NCR) of the negative-strand RNA [3'(-)NCR RNA] of the arterivirus simian hemorrhagic fever virus (SHFV) is 209 nucleotides (nt) in length. Since this 3' region, designated 3'(-)209, is the site of initiation of full-length positive-strand RNA and is the template for the synthesis of the 5' leader sequence, which is found on both full-length and subgenomic mRNAs, it is likely to contain cis-acting signals for RNA synthesis and to interact with cellular and viral proteins to form replication complexes. Gel mobility shift assays showed that cellular proteins in MA104 S100 cytoplasmic extracts formed two complexes with the SHFV 3'(-)209 RNA, and results from competition gel mobility shift assays demonstrated that these interactions were specific. Four proteins with molecular masses of 103, 86, 55, and 36 kDa were detected in UV-induced cross-linking assays, and three of these proteins (103, 55, and 36 kDa) were also detected by Northwestern blotting assays. Identical gel mobility shift and UV-induced cross-linking patterns were obtained with uninfected and SHFV-infected extracts, indicating that the four proteins detected are cellular, not viral, proteins. The binding sites for the four cellular proteins were mapped to the region between nt 117 and 184 (68-nt sequence) from the 3' end of the SHFV negative-strand RNA. This 68-nt sequence was predicted to form two stem-loops, SL4 and SL5. The 3'(-)NCR RNA of another arterivirus, lactate dehydrogenase-elevating virus C (LDV-C), competed with the SHFV 3'(-)209 RNA in competition gel mobility shift assays. UV-induced cross-linking assays showed that four MA104 cellular proteins with the same molecular masses as those that bind to the SHFV 3'(-)209 RNA also bind to the LDV-C 3'(-)NCR RNA and equine arteritis virus 3'(-)NCR RNA. However, each of these viral RNAs also bound to an additional MA104 protein. The binding sites for the MA104 cellular proteins were shown to be located in similar positions in the LDV-C 3'(-)NCR and SHFV 3'(-)209 RNAs. These data suggest that the binding sites for a set of the cellular proteins are conserved in all arterivirus RNAs and that these cell proteins may be utilized as components of viral replication complexes.  相似文献   

6.
The viral polymerase and several cis-acting sequences are essential for hepadnaviral DNA replication, but additional host factors are likely to be involved in this process. We previously identified two sequences, UBS and DBS (upstream and downstream binding sites), present in multiple copies in and adjacent to the pregenomic RNA (pgRNA) terminal redundancy, that were specifically recognized by a 65-kDa host factor, p65. The possible roles of these two sequences in hepatitis B virus (HBV) replication were investigated in the context of the intact viral genome. UBS is contained within the terminal redundancy of pgRNA, and the 5' copy of this sequence is essential for viral replication. Mutations within the central core of UBS ablate p65 binding and selectively block synthesis of plus-strand DNA, without affecting RNA packaging or minus-strand synthesis. The DBS sequence, which is located downstream of the pgRNA polyadenylation site, overlaps the core (C) protein coding region. All mutations introduced into this site severely affected viral replication. However, these effects were shown to result from dominant negative effects of mutant core polypeptides rather than from cis-acting effects on RNA recognition. Thus, the 5' UBS but not DBS sites play important cis-acting roles in HBV DNA replication; however, the involvement of p65 in these roles remains a matter for investigation.  相似文献   

7.
8.
We recently reported purification, determination of the nucleotide sequence, and cloning of a 60-nucleotide RNA (I-RNA) from the yeast Saccharomyces cerevisiae which preferentially blocked cap-independent, internal ribosome entry site (IRES)-mediated translation programmed by the poliovirus (PV) 5' untranslated region (UTR). The I-RNA appeared to inhibit IRES-mediated translation by virtue of its ability to bind a 52-kDa polypeptide which interacts with the 5' UTR of viral RNA. We demonstrate here that the HeLa 52-kDa I-RNA-binding protein is immunologically identical to human La autoantigen. Moreover, I-RNA-mediated purified La protein. By using I-RNAs with defined deletions, we have identified sequences of I-RNA required for inhibition of internal initiation of translation. Two smaller fragments of I-RNA (16 and 25 nucleotides) inhibited PV UTR-mediated translation from both monocistronic and bicistronic RNAs. When transfected into HeLa cells, these derivatives of I-RNA inhibited translation of PV RNA. A comparison of protein binding by active and inactive I-RNA mutants demonstrates that in addition to the La protein, three other polypeptides with apparent molecular masses of 80, 70, and 37 kDa may influence the translation-inhibitory activity of I-RNA.  相似文献   

9.
10.
11.
The 3' untranslated region (UTR) of the positive-sense RNA genome of the coronavirus mouse hepatitis virus (MHV) contains sequences that are necessary for the synthesis of negative-strand viral RNA as well as sequences that may be crucial for both genomic and subgenomic positive-strand RNA synthesis. We have found that the entire 3' UTR of MHV could be replaced by the 3' UTR of bovine coronavirus (BCV), which diverges overall by 31% in nucleotide sequence. This exchange between two viruses that are separated by a species barrier was carried out by targeted RNA recombination. Our results define regions of the two 3' UTRs that are functionally equivalent despite having substantial sequence substitutions, deletions, or insertions with respect to each other. More significantly, our attempts to generate an unallowed substitution of a particular portion of the BCV 3' UTR for the corresponding region of the MHV 3' UTR led to the discovery of a bulged stem-loop RNA secondary structure, adjacent to the stop codon of the nucleocapsid gene, that is essential for MHV viral RNA replication.  相似文献   

12.
The structural and accessory proteins of human immunodeficiency virus type 1 are expressed by unspliced or partially spliced mRNAs. Efficient transport of these mRNAs from the nucleus requires the binding of the viral nuclear transport protein Rev to an RNA stem-loop structure called the RRE (Rev response element). However, the RRE does not permit Rev to stimulate the export of unspliced mRNAs from the efficiently spliced beta-globin gene in the absence of additional cis-acting RNA regulatory signals. The p17gag gene instability (INS) element contains RNA elements that can complement Rev activity. In the presence of the INS element and the RRE, Rev permits up to 30 % of the total beta-globin mRNA to be exported to the cytoplasm as unspliced mRNA. Here, we show that a minimal sequence of 30 nt derived from the 5' end of the p17 gag gene INS element (5' INS) is functional and permits the export to the cytoplasm of 14% of the total beta-globin mRNA as unspliced pre-mRNA. Gel mobility shift assays and UV cross-linking experiments have shown that heterogeneous nuclear ribonucleoprotein (hnRNP) A1 and a cellular RNA-binding protein of 50 kDa form a complex on the 5' INS. Mutants in the 5' INS that prevent hnRNP A1 and 50 kDa protein binding are inactive in the transport assay. To confirm that the hnRNP A1 complex is responsible for INS activity, a synthetic high-affinity binding site for hnRNP A1 was also analysed. When the high affinity hnRNP A1 binding site was inserted into the beta-globin reporter, Rev was able to increase the cytoplasmic levels of unspliced mRNAs to 14%. In contrast, the mutant hnRNP A1 binding site, or binding sites for hnRNP C and L are unable to stimulate Rev-mediated RNA transport. We conclude that hnRNP A1 is able to direct unspliced globin pre-mRNA into a nuclear compartment where it is recognised by Rev and then transported to the cytoplasm.  相似文献   

13.
14.
An infectious cDNA of a highly myocarditic coxsackievirus B3 (CVB3m; Nancy strain) was cloned. Sequence data revealed 43 extra non-viral nucleotides upstream of the initial 5' sequence. However, the authentic 5' end sequence was maintained during replication of viral RNA transfected into HeLa cells, suggesting the RNA synthesizing complex edits the picornaviral 5' terminus sequence. Nucleotide sequences of the 5' nontranslated region and the capsid protein gene sequence of CVB3m were compared with the published sequences of five other CVB3 Nancy strains and two main lineages were found. In comparative assays for cardiovirulence, three of four CVB3 tested were cardiovirulent in adolescent male CD-1 mice. Only one of the three available CVB3 strains was neutralized with several anti-CVB3m monoclonal antibodies, suggesting that mutations in the surface epitopes of the capsid polypeptides contribute to antigenic drift within the serotype, perhaps in part through immunoselective pressures. Thus, phenotypic diversity of CVB3 within the prototype Nancy strain is an example of RNA viruses adapting to changing environments (cells, mice and humans) through mutations and selective pressure.  相似文献   

15.
16.
The small nuclear ribonucleoprotein particles (snRNP) U1, U2, U4, and U5 contain a common set of eight Sm proteins that bind to the conserved single-stranded 5'-PuAU3-6GPu-3' (Sm binding site) region of their constituent U snRNA (small nuclear RNA), forming the Sm core RNP. Using native and in vitro reconstituted U1 snRNPs, accessibility of the RNA within the Sm core RNP to chemical structure probes was analyzed. Hydroxyl radical footprinting of in vitro reconstituted U1 snRNP demonstrated that riboses within a large continuous RNA region, including the Sm binding site, were protected. This protection was dependent on the binding of the Sm proteins. In contrast with the riboses, the phosphate groups within the Sm core site were accessible to modifying reagents. The invariant adenosine residue at the 5' end, as well as an adenosine two nucleotides downstream of the Sm binding site, showed an unexpected reactivity with dimethyl sulfate. This novel reactivity could be attributed to N7-methylation of the adenosine and was not observed in naked RNA, indicating that it is an intrinsic property of the RNA- protein interactions within the Sm core RNP. Further, this reactivity was observed concomitantly with formation of the Sm subcore intermediate during Sm core RNP assembly. As the Sm subcore can be viewed as the commitment complex in this assembly pathway, these results suggest that the peculiar reactivity of the Sm site adenosine bases may be diagnostic for proper assembly of the Sm core RNP. Consistent with this idea, a strong correlation was found between the unusual N7-A methylation sensitivity of the Sm core RNP and its ability to be imported into the nucleus of Xenopus laevis oocytes.  相似文献   

17.
18.
The stability of mRNA for tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis, is regulated by oxygen tension in the pheochromocytoma-derived PC12 cell line. We previously identified a pyrimidine-rich 27-base-long protein-binding sequence in the 3'-untranslated region of TH mRNA that is associated with hypoxia-inducible formation of a ribonucleoprotein complex (hypoxia-inducible protein-binding site (HIPBS)). In this study, we show that HIPBS is an mRNA stabilizing element necessary for both constitutive and hypoxia-regulated stability of TH mRNA. The mutations within this sequence that abolish protein binding markedly decrease constitutive TH mRNA stability and ablate its hypoxic regulation. A short fragment of TH mRNA that contains the wild-type HIPBS confers the increased mRNA stability to the reporter chloramphenicol acetyltransferase mRNA. However, it is not sufficient to confer hypoxic regulation. The HIPBS element binds two isoforms of a 40-kDa poly(C)-binding protein (PCBP). Hypoxia induces expression of the isoform 1, PCBP1, but not the isoform 2, PCBP2, in PC12 cells.  相似文献   

19.
Translation initiation factor eIF-4B promotes the binding of mRNA to 40 S preinitiation complexes and together with eIF-4A possesses RNA helicase activity. To elucidate structural features involved in its function, a series of internal and C-terminal deletions, as well as point mutations, were constructed in the eIF-4B cDNA. The mutated cDNAs were expressed in transiently transfected COS-1 cells, and mutant forms of the factor were overproduced up to about 25-fold over endogenous eIF-4B levels. Inhibition of dihydrofolate reductase (DHFR) synthesis by high levels of eIF-4B variants was determined in vivo, and the binding of the eIF-4B forms to biotinylated RNA was measured in vitro. The results indicate that the N-terminal region containing the RNA binding motif with its RNP1 and RNP2 consensus elements is sufficient for inhibition of DHFR synthesis. Deletion of the RNP1 sequence abrogates RNA binding, but amino acid substitutions at conserved residues do not always inhibit RNA binding. Deletion of the DRYG domain near the middle of eIF-4B results in inhibition of RNA binding, but not of DHFR synthesis. Up to 164 residues of the C terminus are not required for RNA binding, but removal of 226 or more residues completely inhibits RNA binding, perhaps by the loss of two arginine-rich regions. The results suggest that both the RNA recognition motif and the arginine-rich region are required for stable RNA binding but that both are not necessary for in vivo inhibition of protein synthesis.  相似文献   

20.
Various segments of the 3'-nontranslated region of the renal glutaminase (GA) mRNA were tested for their ability to enhance turnover and pH responsiveness. The combined effects were retained in the 340-base R-2 segment. However, the combined R-1 and R-3 fragments also imparted a partial destabilization and pH responsiveness to a chimeric beta-globin mRNA. RNA electrophoretic mobility shift assays indicated that cytosolic extracts of rat renal cortex contain a protein that binds to the R-2 and R-3 RNAs. The binding observed with the R-2 RNA was mapped to a direct repeat of an 8-base AU sequence. This binding was effectively competed with an excess of the same RNA, but not by adjacent or unrelated RNAs. UV cross-linking experiments identified a 48-kDa protein that binds to the AU repeats of the R-2 RNA. The apparent binding of this protein was greatly reduced in renal cytosolic extracts prepared from acutely acidotic rats. Two related RNA sequences in the R-3 segment also exhibited specific binding. However, the latter binding was more effectively competed by R-2 RNA than by itself, indicating that the homologous sites may be weaker binding sites for the same 48-kDa protein. Thus, a single protein may bind specifically to multiple instability elements within the 3'-nontranslated region of the GA mRNA and mediate its pH-responsive stabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号