首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The determinants of pKas in proteins   总被引:1,自引:0,他引:1  
Although validation studies show that theoretical models for predicting the pKas of ionizable groups in proteins are increasingly accurate, a number of important questions remain: (1) What factors limit the accuracy of current models? (2) How can conformational flexibility of proteins best be accounted for? (3) Will use of solution structures in the calculations, rather than crystal structures, improve the accuracy of the computed pKas? and (4) Why does accurate prediction of protein pKas seem to require that a high dielectric constant be assigned to the protein interior? This paper addresses these and related issues. Among the conclusions are the following: (1) computed pKas averaged over NMR structure sets are more accurate than those based upon single crystal structures; (2) use of atomic parameters optimized to reproduce hydration energies of small molecules improves agreement with experiment when a low protein dielectric constant is assumed; (3) despite use of NMR structures and optimized atomic parameters, pKas computed with a protein dielectric constant of 20 are more accurate than those computed with a low protein dielectric constant; (4) the pKa shifts in ribonuclease A that result from phosphate binding are reproduced reasonably well by calculations; (5) the substantial pKa shifts observed in turkey ovomucoid third domain result largely from interactions among ionized groups; and (6) both experimental data and calculations indicate that proteins tend to lower the pKas of Asp side chains but have little overall effect upon the pKas of other ionizable groups.  相似文献   

2.
The 1H NMR assignments have been made for the immunoglobulin (Ig) light chain-binding B1 domain of protein L from Peptostreptococcus magnus. The secondary structure elements and the global folding pattern were determined from nuclear Overhauser effects, backbone coupling constants, and slowly exchanging amide protons. The B1 domain was found to be folded into a globular unit of 61 amino acid residues, preceded by a 15 amino acid long disordered N-terminus. The folded portion of the molecule contains a four-stranded beta-sheet spanned by a central alpha-helix. The fold is similar to the IgG-binding domains of streptococcal protein G, despite the fact that the binding sites on immunoglobulins for the two proteins are different; protein G binds IgG through the constant (Fc) part of the heavy chain, whereas protein L has affinity for the variable domain of Ig light chains.  相似文献   

3.
The sequence-specific proton resonance assignments for the variant-1 (CsE-v1) neurotoxin from the venom of the New World scorpion Centruroides sculpturatus Ewing (range Southwestern United States) have been performed by 2D 1H NMR spectroscopy at 600 MHz. The stereospecific assignments for the beta-methylene protons of 19 non-proline residues have been determined. A number of short-, medium-, and long-range NOESY contacts as well as the backbone and the side-chain vicinal coupling constants for several residues have been determined. Slowly exchanging amide hydrogens from a number of residues have been identified. On the basis of the NMR data, the solution structure of this protein has been determined by a hybrid procedure consisting of distance geometry and dynamical simulated annealing refinement calculations. Distance constraints from the NOESY data and torsion angle constraints from proton vicinal coupling constant data were used in the simulated annealing calculations. The three-dimensional structure of CsE-v1 is characterized by a three-stranded antiparallel beta-sheet, a short alpha-helix, a cis-proline, and intervening loops. A comparison with the solution NMR data of a homologous protein (CsE-v3) from the Centruroides venom, shows that the structures are essentially similar, except for some minor differences. Some of the NMR spectral perturbations are felt in regions far removed from sites of amino acid substitutions. The hydrophobic surface in CsE-v1 is slightly more extended than in CsE-v3.  相似文献   

4.
On the pH dependence of protein stability   总被引:2,自引:0,他引:2  
This paper treats the free energy contribution of ionizable groups to protein stability. A method is presented for the calculation of the pH dependence of the denaturation free energy of a protein, which yields results that can be compared directly to experiment. The first step in the treatment is the determination of the average charges of all the ionizable groups in both the folded and unfolded protein. An expression due to Tanford then relates the pH dependence of the unfolding free energy to the difference in net charge between the two states. In order to determine absolute rather than relative unfolding free energies, it is necessary to calculate the total contribution of ionizable groups to protein stability at some reference pH. This is accomplished through a statistical mechanical treatment similar to the one used previously in the calculation of pKas. The treatment itself is rigorous but it suffers from uncertainties in the pKa calculations. Nevertheless, the overall shape of experimentally observed plots of denaturation free energy as a function of pH are reasonably well reproduced by the calculations. A number of general conclusions that arise from the analysis are: (1) knowledge of titration curves and/or effective pKa values of ionizable groups in proteins is sufficient to calculate the pH dependence of the denaturation free energy with respect to some reference pH value. However, in order to calculate the absolute contribution of ionizable groups to protein stability, it is necessary to also know the intrinsic pKa of each group. This is defined as the pKa of a group in a hypothetical state of the protein where all other groups are neutral. (2) Due to desolvation effects, ionizable groups destabilize proteins, although the effect is strongly dependent on pH. There are however, strongly stabilizing pairwise Coulombic interactions on the surface of proteins. (3) Plots of stability versus pH should not be interpreted in terms of a group whose pKa corresponds to the titration midpoint, but rather to a group with different pKas (that correspond approximately to the titration end points) in each state. (4) Any residual structure in the GuHCl-denatured state of proteins appears to have little effect on the pH dependence of stability. (5) pH-dependent unfolding, for example to the "molten globule" state, appears due to individual groups with anomalous pKas whose locations on the protein surface may determine the nature of the unfolded state.  相似文献   

5.
The electrostatic behavior of titrating groups in alpha-sarcin was investigated using 1H NMR spectroscopy. A total of 209 chemical shift titration curves corresponding to different protons in the molecule were determined over the pH range of 3.0-8.5. Nonlinear least-squares fits of the data to simple relationships derived from the Henderson-Hasselbalch equation led to the unambiguous determination of pKa values for all glutamic acid and histidine residues, as well as for the C-terminal carboxylate and most of the aspartic acids in the free enzyme. The ionization constants of catalytically relevant histidines, His50 and His137, and glutamic acid, Glu96, in the alpha-sarcin-2'-GMP complex were also determined. The pKa values of 15 ionizable groups (C-carboxylate, six aspartic acids, four glutamic acids, and four histidines) were found to be close to their normal values. On the other hand, a number of side chain groups, including those in the active center, showed pKa values far from their intrinsic values. Thus, the pKa values for active site residues His50, Glu96, and His137 were 7.7, 5.2, and 5.8 in the free enzyme and 7.6, approximately 4.8, and 6.8 in the alpha-sarcin-2'-GMP complex, respectively. The pKa values and the activity profile against ApA, as a function of pH, are in agreement with the proposed enzymatic mechanism (in common with RNase T1 and the family of the microbial ribonucleases), in which Glu96 and His137 act as a general base and general acid, respectively. In almost all microbial ribonucleases, a Phe-His interaction is present, which affects the pKa of one of the His residues at the active site (His137). The absence of this interaction in alpha-sarcin would explain the lower pKa value of this His residue, and provides an explanation for the decreased RNase activity of this protein as compared to those of other microbial ribonucleases.  相似文献   

6.
DsbA is the strongest protein disulfide oxidant yet known and is involved in catalyzing protein folding in the bacterial periplasm. Its strong oxidizing power has been attributed to the lowered pKa of its reactive active site cysteine and to the difference in thermodynamic stability between the oxidized and the reduced form. However, no structural data are available for the reduced state. Therefore, an NMR study of DsbA in its two redox states was undertaken. We report here the backbone 1HN, 15N, 13C(alpha) 13CO, 1H(alpha), and 13Cbeta NMR assignments for both oxidized and reduced Escherichia coli DsbA (189 residues). Ninety-nine percent of the frequencies were assigned using a combination of triple (1H-13C-15N) and double resonance (1H-15N or 1H-13C) experiments. Secondary structures were established using the CSI (Chemical Shift Index) method, NOE connectivity patterns, 3(J)H(N)H(alpha) and amide proton exchange data. Comparison of chemical shifts for both forms reveals four regions of the protein, which undergo some changes in the electronic environment. These regions are around the active site (residues 26 to 43), around His60 and Pro 151, and also around Gln97. Both the number and the amplitude of observed chemical shift variations are more substantial in DsbA than in E. coli thioredoxin. Large 13C(alpha) chemical shift variations for residues of the active site and residues Phe28, Tyr34, Phe36, Ile42, Ser43, and Lys98 suggest that the backbone conformation of these residues is affected upon reduction.  相似文献   

7.
The protein fusion technique was applied in the synthesis of an artificial dimer of ribonuclease H (305 residues). 1H NMR spectroscopy was used to analyze the structure of this dimer. Spectral profiles and pKa values of the histidine residues obtained using 1H NMR indicate that the dimer retains the secondary and tertiary structures of the intact monomer. Selective spin-lattice relaxation measurements suggest that the two monomeric units in the dimer are in tight contact. Furthermore, the 2D 1H NMR and paramagnetic relaxation filter results show that the two monomers bind together through interactions between the N- and C-terminal sites of the linked regions.  相似文献   

8.
The calmodulin- and calcium-stimulated protein phosphatase calcineurin, PP2B, consists of two subunits: calcineurin B, which binds Ca2+, and calcineurin A, which contains the catalytic site and a calmodulin binding site. Heteronuclear 3D and 4D NMR experiments were carried out on a recombinant human calcineurin B which is a 170-residue protein of molecular mass 19.3 kDa, uniformly labeled with 15N and 13C. The nondenaturing detergent CHAPS was used to obtain a monomeric form of calcineurin B. Three-dimensional triple resonance experiments yielded complete sequential assignment of the backbone nuclei (1H, 13C, and 15N). This assignment was verified by a 4D HN(COCA)NH experiment carried out with 50% randomly deuteriated and uniformly 15N- and 13C-enriched calcineurin B. The secondary structure of calcineurin B has been determined on the basis of the 13C alpha and 13C beta secondary chemical shifts, J(HNH alpha) couplings, and NOE connectivities obtained from 3D 15N-separated and 4D 13C/15N-separated NOESY spectra. Calcineurin B has eight helices distributed in four EF-hand, helix-loop-helix [Kretsinger, R. H. (1980) CRC Crit. Rev. Biochem. 8, 119-174] calcium binding domains. The secondary structure of calcineurin B is highly homologous to that of calmodulin. In comparison to calmodulin, helices B and C are shorter while helix G is considerably longer. As was observed for calmodulin in solution, calcineurin B does not have a single long central helix; rather, helices D and E are separated by a six-residue sequence in a flexible nonhelical conformation.  相似文献   

9.
The pH dependence of the association of apo trp repressor with the series of ligands, tryptophan, tryptamine, indole propionic acid (IPA), and trans-beta-indole acrylic acid (IAA), has been studied using fluorescence titrations and isothermal titration microcalorimetry (ITC). The purpose of such a comparison of ligands and the pH dependency studies is to reveal the role played by the side-chain functional groups in the energetics of the binding of the ligands to the protein. We find that, whereas the binding of tryptamine and IPA have essentially no pH dependence between pH 6 and 10, the binding of tryptophan and IAA depends on pH. For IAA, the affinity drops between pH 6 and 10, consistent with a shift in pKa of some group on the protein from a value of pKa 7.4 to 7.9 upon binding of this ligand. The affinity of IAA also drops below pH 5, but shows saturable binding at pH 2-3, where the protein has previously been found to exist as a partially folded monomeric state. For tryptophan, the pH dependence data indicate that the equilibrium is complicated. We present a model to describe the data in which the alpha-ammonium group of tryptophan has its pKa shifted upward upon binding (i.e. preferential binding of the protonated form of this functional group) and in which the pKa of an unknown group on the protein also has its pKa increased.  相似文献   

10.
The three-dimensional structure of Ca2+-bound rat S100B(betabeta) has been determined using data from a series of two-dimensional (2D), three-dimensional (3D), and four-dimensional (4D) nuclear magnetic resonance (NMR) experiments. Each S100beta subunit (91 residues) contains four helixes (helix 1, E2-R20; helix 2, K29-N38; helix 3, Q50-D61; and helix 4, F70-A83) and one antiparallel beta-sheet (strand 1, K26-K28; and strand 2, E67-D69) which brings the normal and pseudo EF-hands together. As found previously for rat apo-S100B(betabeta) [Drohat, A. C., et al. (1996) Biochemistry 35, 11577-11588], helixes 1, 1', 4, and 4' associate to form an X-type four-helix bundle at the symmetric dimer interface. Additionally, Ca2+ binding does not significantly change the interhelical angle of helixes 1 and 2 in the pseudo EF-hand (apo, Omega1-2 = 132 +/- 4 degrees; and Ca2+-bound, Omega1-2 = 137 +/- 5 degrees). However, the interhelical angle of helixes 3 and 4 in the normal EF-hand (Omega3-4 = 106 +/- 4 degrees) changed significantly upon the addition of Ca2+ (DeltaOmega3-4 = 112 +/- 5 degrees) and is similar to that of the Ca2+-bound EF-hands in calbindin D9K, calmodulin, and troponin (84 degrees 相似文献   

11.
The crystal structure of a blue emission variant (Y66H/Y145F) of the Aequorea victoria green fluorescent protein has been determined by molecular replacement and the model refined. The crystallographic R-factor is 18.1% for all data from 20 to 2.1 A, and the model geometry is excellent. The chromophore is non-native and is autocatalytically generated from the internal tripeptide Ser65-His66-Gly67. The final electron density maps indicate that the formation of the chromophore is complete, including 1,2 dehydration of His66 as indicated by the planarity of the chromophore. The chromophore is in the cis conformation, with no evidence for any substantial fraction of the trans configuration or uncyclized apoprotein, and is well-shielded from bulk solvent by the folded protein. These characteristics indicate that the machinery for production of the chromophore from a buried tripeptide unit is not only intact but also highly efficient in spite of a major change in chromophore chemical structure. Nevertheless, there are significant rearrangements in the hydrogen bond configuration around the chromophore as compared to wild-type, indicating flexibility of the active site. pH titration of the intact protein and the chromopeptide (pKa1 = 4.9 +/- 0.1, pKa2 = 12.0 +/- 0.1) suggests that the predominant form of the chromophore in the intact protein is electrically neutral. In contrast to the wild-type protein [Chattoraj, M., King, B. A., Bublitz, G. U., & Boxer, S. G. (1996) Proc. Natl. Acad. Sci. U.S.A., 8362-8367], femtosecond fluorescence up-conversion spectroscopy of the intact protein and a partially deuterated form strongly suggests that excited-state proton transfer is not coupled to fluorescence emission.  相似文献   

12.
During the past two decades, nuclear magnetic resonance spectroscopy (NMR) has played an ever-increasing role in the structural determination of fatty acids, fatty acid derivatives and analogues, and in the analysis of the structures of triacylglycerols including the quantitative analysis of lipid mixtures. This article discusses some of the results obtained through the application of the NMR technique to lipid molecules and reviews the literature. To maintain brevity, this article does not cover the underlying theory of NMR spectroscopy as numerous books devoted to modern NMR spectroscopy have been published.  相似文献   

13.
The three-dimensional solution structure of the 259-residue 30 kDa N-terminal domain of enzyme I (EIN) of the phosphoenolpyruvate:sugar phosphotransferase system of Escherichia coli has been determined by multidimensional nuclear magnetic resonance spectroscopy. Enzyme I, which is autophosphorylated by phosphoenolpyruvate, reversibly phosphorylates the phosphocarrier protein HPr, which in turn phosphorylates a group of membrane-associated proteins, known as enzymes II. To facilitate and confirm NH, 15N, and 13C assignments, extensive use was made of perdeuterated 15N- and 15N/13C-labeled protein to narrow line widths. Ninety-eight percent of the 1H, 15N, and 13C assignments for the backbone and first side chain atoms of protonated EIN were obtained using a combination of double and triple resonance correlation experiments. The structure determination was based on a total of 4251 experimental NMR restraints, and the precision of the coordinates for the final 50 simulated annealing structures is 0.79 +/- 0.18 A for the backbone atoms and 1.06 +/- 0.15 A for all atoms. The structure is ellipsoidal in shape, approximately 78 A long and 32 A wide, and comprises two domains: an alpha/beta domain (residues 1-20 and 148-230) consisting of six strands and three helices and an alpha-domain (residues 33-143) consisting of four helices. The two domains are connected by two linkers (residues 21-32 and 144-147), and in addition, at the C-terminus there is another helix which serves as a linker between the N- and C-terminal domains of intact enzyme I. A comparison with the recently solved X-ray structure of EIN [Liao, D.-I., Silverton, E., Seok, Y.-J., Lee, B. R., Peterkofsky, A., & Davies, D. R. (1996) Structure 4, 861-872] indicates that there are no significant differences between the solution and crystal structures within the errors of the coordinates. The active site His189 is located in a cleft at the junction of the alpha and alpha/beta domains and has a pKa of approximately 6.3. His189 has a trans conformation about chi1, a g+ conformation about chi2, and its Nepsilon2 atom accepts a hydrogen bond from the hydroxyl proton of Thr168. Since His189 is thought to be phosphorylated at the N epsilon2 position, its side chain conformation would have to change upon phosphorylation.  相似文献   

14.
1H nuclear magnetic resonance (NMR) spectra at 270 MHz of gene 5 protein from bacteriophage fd and its complexes with tetra- and octadeoxynucleotides show that approximately 12 of the 37 aromatic protons of the protein undergo upfield shifts upon nucleotide binding. In the complex with d(pT)8, the upfield shifts of the aromatic protons average approximately 0.3 ppm, while in the d(pA)8 complex the same resonances (assigned to tyrosyl protons) shift upfield approximately 0.8 ppm. These are interpreted as ring current shifts induced by stacking of the phenyl rings of three of the five tyrosyl residues with the bases of the nucleotides. 19FNMR of m-fluorotyrosyl gene 5 protein shows five separate resonances: two downfield from m-fluorotyrosine corresponding to "buried" tyrosyls and three near m-fluorotyrosine corresponding to "surface" tyrosyls. The latter (assigned to Tyr-26, -41, and -56, shown by chemical modification to be exposed to solvent) move upfield on nucleotide binding. The downfield 19F resonances are unaffected. Thus the aromatic protons shifted upfield on nucleotide binding appear to be those of Tyr-26, -41, and -56. In contrast to tetra-, octanucleotide binding to gene 5 protein induces large changes in the 1H resonances of the -CH3 groups of the Val, Leu, and Ile side chains. These may reflect conformational changes induced by protein-protein interactions between two monomers bound to the octanucleotide. 1H resonances of the epsilon-CH2 groups of the lysyl residues in the protein and the complexes with nucleotides are narrow with long T2 values, suggesting considerable rotational motion. Thus epilson-NH3+-phosphate interactions, if they occur, are on the surface of the complex and allow the epsilon-CH2 groups to retain considerable rotational freedom. 31P NMR of the bound nucleotides shows large decreases in T1 for the 3'-5' diesters, but little chemical shift suggesting no unusual distortion of the nucleotide backbone on binding to gene 5 protein. A three-dimensional model of a gene 5 protein-octanucleotide complex has been built based on predictions of the secondary structure from the amino acid sequence (87 AA) and tertiary folding dictated by known chemical and NMR features of the complex.  相似文献   

15.
The binding of Src homology 2 (SH2) domains to tyrosyl phosphopeptides depends on electrostatic interactions between the phosphotyrosine and its binding site. To probe the role of these interactions, we have used isothermal titration calorimetry to study the pH dependence of the binding of the SH2 domain of the Src kinase to a high-affinity tyrosyl phosphopeptide. Two independent approaches were employed. In a first series of experiments that focused on determining the peptide's association constant between pH 5.0 and 9.0, two ionizable groups were characterized. One group, with free and bound pKas of 6.2 and 4.4, respectively, could be identified as the phosphate in the phosphotyrosine while the other group, with free and bound pKas of 8.2 and 8.5, respectively, could be only tentatively assigned to a cysteine in the phosphotyrosine binding pocket. Further information on the linkage between peptide binding and protonation of the phosphotyrosine was obtained from a second series of experiments, which focused on determining the peptide binding enthalpy at low values of pH in several buffers with different ionization enthalpies. These data provided free and bound pKa values for the phosphotyrosine identical to those derived from the first series of experiments, and hence demonstrated for the first time that the two approaches provide identical information regarding proton linkage. In addition, the second series of experiments also determined the intrinsic enthalpy of binding of both the protonated and deprotonated phosphate forms of the peptide. These two sets of experiments provided a complete energetic profile of the linkage between phosphate ionization and peptide binding. From this profile, it was determined that the PO32- form of the peptide binds 2.3 kcal mol-1 more favorably than the PO3H1- form due entirely to a more favorable entropy of binding.  相似文献   

16.
Structurally characterizing partially folded peptides is problematic given the nature of their transient conformational states. 13C-NMR relaxation data can provide information on the geometry of bond rotations, motional restrictions, and correlated bond rotations of the backbone and side chains and, therefore, is one approach that is useful to assess the presence of folded structure within a conformational ensemble. A peptide 12mer, R1GITVNG7KTYGR12, has been shown to partially fold in a relatively stable beta-hairpin conformation centered at NG. Here, five residues, G2, V5, G7, Y10, G11, were selectively 13C-enriched, and 13C-NMR relaxation experiments were performed to obtain auto- and cross-correlation motional order parameters, correlation times, bond rotation angular variances, and bond rotational correlation coefficients. Our results indicate that, of the three glycines, G7 within the hairpin beta-turn displays the most correlated phi(t),psi(t) rotations with its axis of rotation bisecting the angle defined by the H-C-H bonds. These positively correlated bond rotations give rise to "twisting" type motions of the HCH group. V5 and Y10 phi,psi bond rotations are also positively correlated, with their CbetaCalphaH groups undergoing similar "twisting" type motions. Motions of near-terminal residues G2 and G11 are less restricted and less correlated and are best described as wobbling-in-a-cone. V5 and Y10 side-chain motions, aside from being highly restricted, were found to be correlated with phi,psi bond rotations. At 303 K, where the hairpin is considered "unfolded," the peptide exists in a transient, collapsed state because backbone and side-chain motions of V5, G7, and Y10 remain relatively restricted, unlike their counterparts in GXG-based tripeptides. These results provide unique information toward understanding conformational variability in the unfolded state of proteins, which is necessary to solve the protein folding problem.  相似文献   

17.
A generalized, weighted, nonlinear least squares procedure is developed, based on pH titration data, for the refinement of octanol-water partition coefficients (log P) and ionization constants (pKa) of multiprotic substances. Ion-pair partition reactions, self-association reactions forming oligomers, and formations of mixed-substance complexes can be treated with this procedure. The procedure allows for CO2 corrections in instances where the base titrant may have CO2 as an impurity. Optionally, the substance purity and the titrant strength may be treated as adjustable parameters. The partial differentiation in the Gauss-Newton refinement procedure is based on newly derived analytical expressions. The new procedure was experimentally demonstrated with benzoic acid, 1-benzylimidazole, (+/-)-propranolol, and mellitic acid (benzenehexacarboxylic acid, AH6). Ionic strength (l) was adjusted with KNO3. Benzoic acid (20 degrees C; l 0.1 M): pKa = 3.99 +/- 0.02, log P = 1.96 +/- 0.02, log P (anion) = -1.2; 1-benzylimidazole (25 degrees C; l 0.1 M): pKa = 6.70 +/- 0.03, log P = 1.60 +/- 0.04; propranolol (25 degrees C; l 0.1 M): pKa = 9.53 +/- 0.06, log P = 3.35 +/- 0.03, log P (cation) = 0.62 +/- 0.08; mellitic acid (26 degrees C; l 0.2 M): pKas 1.10 +/- 0.46, 1.69 +/- 0.03, 2.75 +/- 0.02, 4.00 +/- 0.02, 5.05 +/- 0.01, and 6.04 +/- 0.02; in the presence of 0.01 M n-Bu4NBr, log P (AH6) = 1.5, log P (AH5-) = 1.1, log P (AH4(2-)) = 0.8, log P (AH3(3-)) = 0.3, log P (AH2(4-)) = -0.1, and log P (AH5-) = -0.5 (all +/- 0.1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Monoclonal antibodies (MAbs) were generated by immunizing mice with a truncated recombinant protein corresponding to the immunodominant region (residues 1-120) of hepatitis C virus (HCV) nucleocapsid protein. The specific recognition by either human sera or mouse monoclonal antibodies of overlapping peptides spanning the core region 1-120 as well as the comparison with epitopes described earlier allowed the fine mapping of HCV core. Within the region 1-120, the major antigenic domain could be restricted to the first 45 amino acids. Indeed, the peptide S42G (residues 2-45) allowed the detection of an anti-HCV core response by all anticore-positive human sera examined. According to their epitope localization, three groups of mouse MABs could be evidenced that were directed against different regions of core. Group II MAbs recognized a strictly linear epitope (QDVKF, residues 20-24), whereas group I MABs were directed against a conformational epitope mainly located at the amino acid residues (QIVGG, 29-33). The epitope of group III MABs was also conformational (PRGRRQPI, residues 58-65). These three epitopes appeared close but different from the three major human epitopes RKTKRNTN, VYLLPR, and GRTWAQPGYPWPLY (residues 7-17, 34-39, and 73-86, respectively). Group II MAB 7G12A8 and group I MAB 19D9D6 were used in a sandwich ELISA for the capture and the detection, respectively, of viral core antigen in sera of patients with chronic HCV infection. After treatment of sera with triton x 100 in acidic conditions, amounts of viral antigen as low as 20 pg/ml of sera could be detected.  相似文献   

19.
Calbindin D9k is a small, well-studied calcium-binding protein consisting of two helix-loop-helix motifs called EF-hands. The P43MG2 mutant is one of a series of mutants designed to sequentially lengthen the largely unstructured tether region between the two EF-hands (F36-S44). A lower calcium affinity for P43MG was expected on the basis of simple entropic arguments. However, this is not the case and P43MG (-97 kJ.mol-1) has a stronger calcium affinity than P43M (-93 kJ.mol-1), P43G (-95 kJ.mol-1) and even wild-type protein (-96 kJ.mol-1). An NMR study was initiated to probe the structural basis for these calcium-binding results. The 1H NMR assignments and 3JHNH alpha values of the calcium-free and calcium-bound form of P43MG calbindin D9k mutant are compared with those of P43G. These comparisons reveal that little structure is formed in the tether regions of P43MG(apo), P43G(apo) and P43G(Ca) but a helical turn (S38-K41) appears to stabilize this part of the protein structure for P43MG(Ca). Several characteristic NOEs obtained from 2D and 3D NMR experiments support this novel helix. A similar, short helix exists in the crystal structure of calcium-bound wild-type calbindin D9k-but this is the first observation in solution for wild-type calbindin D9k or any of its mutants.  相似文献   

20.
The spectral densities of the backbone and arginine side chain NH bonds of the DNA binding domain of the fructose repressor (FruR) were extensively analyzed in order to extract reliable motions parameters. An accurate measurement of 15N NMR relaxation rates allowed their calculation at three frequencies, zero, omegaN, and omegaH + omegaN, using a reduced matrix approach. Linear correlations were found between J(omegaN) and J(0) and between and J(0). The analysis of the compatibility between the motions parameters obtained independently from the two correlation lines allowed further development of the linear correlation approach proposed recently [Lefèvre, J. F., Dayie, K. T., Peng, J. W., and Wagner, G. (1996) Biochemistry 35, 2674-2686]. The results demonstrate (i) the existence of a concerted motion along the whole backbone with a global correlation time equal to 5.95 ns.rad-1, and (ii) the presence of complex internal movements at an intermediate time scale around 1 ns. The extracted motion parameters have been related to those obtained with the extended Lipari and Szabo approach but are incompatible with those obtained using the usual simple Lipari and Szabo approach. They were correlated to the features of the NMR structure of FruR(1-57)*. Some residues in the turns and in the third helix experience slow motions in the micro- to millisecond time scale. Side-chain motions are not correlated to the backbone dynamics. A direct examination of spectral densities reveals a higher flexibility for the side chains of arginines that are not involved in ionic bridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号