首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enhancement of TOC, CODMn, and UV254 reduction in the conventional drinking water treatment process by pre-ozonation was investigated in South China on treating dam source water with a pilot plant consisting of pre-ozonation, coagulation-sedimentation, and filtration units. Pre-ozonation enhanced the reduction of NOM in the conventional coagulation-sedimentation and filtration process, and the total removals of UV254, CODMn and TOC were improved for 34.6%, 18.1% and 15.3%, respectively by the adoption of pre-ozonation under an ozone dose (in ozone consumption base) of 0.85 mg/L. The enhancement of UV254 and CODMn removals was mainly achieved through direct ozonation on humic substances, and that for TOC removal was achieved through biodegradation in sand filtration. In comparison with the TOC removal of 38%, a removal of 49% was acquired for SDS-THM under a pre-ozonation dose of 0.80 mg/L, indicating the selective removal of THMFP. The reduction of SDS-THM paralleled the reduction of CODMn to a significant degree, suggesting that the CODMn might be an effective surrogate parameter for SDS-THM if the raw water does not contain the reductive inorganic matters. Although the source water contains 13.2–27.0μg/L bromide, the formation of bromate was negligible when the ozone dose was below 1.0 mg/L.  相似文献   

2.
Batch type ozone experiments conducted on aquatic humic substances solutions spiked with bromide ion were developed to evaluate the importance of various parameters that may affect the formation of bromate ion during ozonation. The nature of the NOM, the alkalinity, the bromide ion content and the presence of ammonia were found to significantly affect the bromate ion production. Temperature and pH can be considered as minor factors. The ozonation of a clarified surface water using a continuous flow ozone contactor have shown that the addition of a low quantity of ammonia (0.05 to 0.1 mg/L NNH4 +) appeared to be an interesting option for controlling the bromate formation. On the contrary, the addition of hydrogen peroxide may enhance or reduce the bromate ion production, depending on the applied hydrogen peroxide/ozone ratio.  相似文献   

3.
Intensive pilot studies were performed to study the impact of ozone dose (0.6 to 3.5 mg/L), pH (6.0 to 7.5), and contact time (12 to 38 min) on bromate (BrO3) formation, for different sand-filtered water qualities from the Neuilly-sur-Marne Treatment Plant (COT = 1.3 to 2.2 mg/L, TAC = 190 to 230 mg CaCO3, [Br?] = 25 to 50 μg/L, and T = 5°C to 26°C). Whatever the water quality studied, the main factors influencing bromate formation were ozone dose, pH, and a cross factor between them. Bromate formation was shown to be proportional to bromide concentration, and to increase only slightly with temperature, depending on the ozone dose and the pH. As on the contrary temperature has an important impact on disinfection, especially when considering Cryptosporidium inactivation, resolving the challenge of ensuring disinfection while limiting bromate formation was shown to be quite easily achievable, at intermediate temperature, and with more stringent conditions at high temperature (because of bromate formation) or at low temperature (because of disinfection).  相似文献   

4.
赵光宇  吕锡武  周易 《化工学报》2013,64(8):3031-3038
引言臭氧用于饮用水处理已有悠久的历史,可有效去除色度和浊度,除异味,降解有机污染物和提高可生物降解性能。由于臭氧在紫外的激发下产生氧化能力更强的羟基自由基(·OH),该氧化剂与许多物质的反应速率常数在108~1010之间,因此,臭氧与紫外的联合作用能够迅速降解多种持久性有机物。面对水源地中出现的种类繁多的持久性有机物,UV/O3工艺受到了越来越多的关注。  相似文献   

5.
La3+/WO3/TiO2/sep composites have been prepared by the sol–gel method. The degradation of dye was studied under the influence of various operational parameters such as initial pH, amounts of catalyst, concentrations of the dye, and ozone flow rate. The mineralization of Reactive Orange 122 has been confirmed by chemical oxygen demand measurements. The color removal of dye was found to follow a pseudo–first-order kinetics. Maximum color and chemical oxygen demand removal were 99.9% and 90% respectively, at a dye concentration of 200 mg/L, ozone flow rate of 2.0 L/min., 0.05 g/L weight of catalyst, and pH of 6.9 in 4 h. In addition, the catalyst was characterized by X-ray diffraction spectra, Fourier-Transform Infrared Spectroscopy, scanning electron microscopy, and a transmission electron microscope. This work could be a good candidate as a practical application for photocatalytic dye degradation.  相似文献   

6.
ABSTRACT

In this study, the ozonolysis of real anaerobically digested distillery wastewater (DWW) was carried out. The effect of operating parameters, such as pH, initial concentration, and ozone dosage, on the efficiency of ozone utilization, color removal, and sludge solubilization was studied. The highest ozone utilization of 99% was observed at the highest initial concentration (COD of 3000 mg/L) and lowest ozone flowrate (22.5 mg O3/L/min), but with a very low color reduction of 20%, after 60 minutes of ozonolysis. To achieve a higher color reduction >80% and at ozone utilization >95%, the DWW had to be diluted twice (COD 1500 mg/L), and the flowrate doubled to 45 mg O3/L/min. The reduction in color signified the oxidation of the color causing biorecalcitrant aromatic melanoidin compounds. This was confirmed by the 47% reduction in ultraviolet absorbance at 254 nm indicating the breakdown of the complex aromatic compounds into low molecular weight organics. Moreover, increases in average oxidation state from ?0.6 to ?0.2 suggested a decline in aromaticity and formation of easily biodegradable aliphatic compounds. The ozonolysis process was found to follow the first-order reaction kinetic model with the highest rate constant of 0.0326 min?1 obtained. A reduction in suspended COD by 88% indicated solubilization of the sludge contained in the effluent.  相似文献   

7.
The post-treatment of composting leachate via an ozonation process in laboratory scale was studied in batch mode. According to the experiments, the COD removal was 47% after 30 min of ozonation via 0.4 g/h ozone (equivalent to 2.8 mg O3/mg COD removed) at pH 9. In this circumstance, the removal of color and turbidity was also 86% and 89%, respectively. Increasing the ozone mass flow rate higher than 0.4 g/h had no considerable effect on the process variables. However, increasing the reaction time had a significant effect on both the removal of color and on COD of the leachate. Experimental data indicated that complete removal of color and 51% removal of COD were achieved after about 40 min of ozonation via 0.4 g/h ozone (equivalent to 3.3 mg O3/mg COD removed). The ozone consumption rate increased as the reaction progressed and reached 4.1 mg O3/mg COD removed after 60 min.  相似文献   

8.
Factors affecting the formation of by-products of ozonation during ammonia removal under the existence of bromide were investigated. The presence of reducible N compounds could significantly reduce the formation of bromate and brominated organics; however, it was difficult to completely prevent formation of the by-products. It was therefore concluded that while the method used in this study was an effective process to decompose ammonia, it should be applied to the treatment of wastewaters containing low concentration of TOC. For power plant condensate demineralization wastewater containing TOC of 3 to 4mg/L, TOX formed during ammonia removal ranged from 0.20 to 0.30 mgBr L?1. The only halogenated organic substance of the power plant wastewater detected on GC spectrum was bromoform, whose concentration varied from 0.11 to 0.14 mg L?1. Column test results indicated that bromate could almost completely be decomposed to bromide by activated carbon under proper space velocity and pH. Activated carbon was also very effective in adsorption of CHBr3: 1 g activated carbon adsorbed ca. 20.3 mg of CHBr3.  相似文献   

9.
The contribution of ozone and hydroxyl radical to the formation of bromate ion was investigated in a continuous flow reactor. Experiments were conducted under a wide range of ozone dose (0.7 ~ 3.8 mgL), pH (6.5 ~ 8.5), and t-butanol concentration (0 ~ 0.5 mM). The formation of bromate ion was found to depend on radical reaction pathway, because the amount of bromate ion formed increased with pH and decreased with t-butanol, a radical scavenger, even when dissolved ozone concentrations were almost the same. In fact, the amount of bromate ion formed was reduced by 90% in the presence of t-butanol. Furthermore, the formation of bromate ion occurred even when dissolved ozone was not significantly detected in the presence of organic matter (TOC of 1 mgCL). The second-order reaction rate constant of hydroxyl radical with bromide ion, k HO,Br? of 1.7 × 109 (M?1s?1), was obtained on the assumption that the reactions of bromide ion and t-butanol with hydroxyl radical were competitive with each other in the presence of t-butanol and that the formation of bromate ion depended on the reaction of bromide ion with hydroxyl radical. Therefore, it is concluded that the reaction of bromide ion with hydroxyl radical dominated in the overall reaction from bromide ion to bromate ion in the continuous flow reactor.  相似文献   

10.
Bromate concentration, ozone lifetime and ozone exposure (CT value) measured in bottled water in full-scale runs, were in good agreement to those measured in laboratory experiments. Ozone lifetime in bottled water was high enough to result in a CT value greater than 5 even for ozone dose as low as 0.1?mgO3/L, at a water pH of 7.6. Bromate was gradually formed during the ozone lifetime. Bormate formation and ozone exposure were significantly influenced by pH. In full-scale runs, an ozone dose of 0.15?mgO3/L at pH=7.6 resulted in a CT of 10.3 and a bromate concentration of 13.5?µg/L, while at pH=7.25 the values of CT and BrO3 ? were 12.6 and 9.6?µg/L, respectively. By decreasing further the pH to 6.8, an increase of CT value to 15.8 and a reduction of bromate to 5.5?µg BrO3 ?/L were observed. In addition, results in full-scale runs showed that ozone exposure and bromate concentrations were linearly related to ozone dose in the working range of 0.1 to 0.25?mgO3/L.  相似文献   

11.
Effluent from a kraft process pulp mill was studied in a batch reactor for ozone doses between 50 and 200 mg O3/L to identify the relative suitability of ozone application locations in the treatment process and see the improvements in biotreatability of wastewaters from a kraft process pulp mill. Laboratory acclimatized seed were used for BOD tests for ozonated and unozonated samples. The inhibitory effects were minimized by using optimum dilutions. The studies were divided into three major sections: characterization of mill effluent; ozone system calibration, and reactor design; and ozonation of mill effluent. Seed for Biochemical Oxygen Demand tests were acclimatized in batch units for primary, bleach and secondary effluents separately. The inhibitory effects which were noted with unacclimatized seed, were reduced by using laboratory acclimatized seed and optimum dilution which were determined during the characterization phase.

The batch reactor designed for the studies consisted of a cylindrical section for holding effluent, and a top spherical section for ozone/oxygen mixture. The reactor proved to be effective for controlling ozone dose. The variation in the applied ozone dose was less than 5 mg/L.

Bleach and primary effluents were treated with 50 and 100 mg/L ozone doses. Duplicate experiments were conducted for these effluents. Secondary effluent was studied for 50,100,150 and 200 mg/L ozone doses. Six replicate experiments were conducted for 50 and 100 mg/L ozone doses, whereas two experiments were carried out for 150 mg/L and one experiment for 200 mg/L ozone dose.

The results were analyzed using 't' test for paired experiments and ANOVA table for statistical confirmation. Residuals were plotted to check the assumptions of constant variance and normal distribution. The results indicated that 50 and 100 mg O3/L effectively removed color from bleach effluent and primary effluent, but did not significantly change the BOD. Ozone was found to be effective for secondary effluent, as BOD5 was increased by 65% for 50 and 100% for 100 mg O3/L doses. The corresponding reduction in color was 62% and 82%, respectively. Ke and Lo values for the BOD equation were calculated by using the non-linear least square method for the BOD equation, giving joint confidence regions for the calculated parameters. It was concluded that ozone is most effective for the removal of color and the increase of BOD in secondary effluent.  相似文献   


12.
臭氧预氧化/曝气生物滤池污水深度处理特性研究   总被引:19,自引:0,他引:19  
王树涛  马军  田海  张海洋 《现代化工》2006,26(11):32-36
研究了臭氧预氧化/曝气生物滤池联合工艺对生活污水二级出水的处理特性。结果表明当臭氧投量为10 mg/L、接触时间为4 min时,臭氧预氧化/BAF联合工艺对COD、NH3-N的去除率分别达到58%和90%;使TOC、UV254和色度分别降低了25%、75%和90%。在上述投量和接触时间条件下,臭氧化使TOC/UV254值升高1倍,使可生化溶解性有机碳(BDOC)由原来的0.8~1.1 mg/L提高到2.0~2.7 mg/L。臭氧预氧化使分子质量小于1 k的有机物比例由原来的52.9%升高到72.73%。  相似文献   

13.
Experimental research was carried out for calibration and validation of a model describing ozone decay and ozone exposure (CT), decrease in UV absorbance at 254 nm (UVA254), increase in assimilable organic carbon concentration and bromate formation. The model proved to be able to predict these parameters on the basis of the applied ozone dosage. The experimental ozone dosages ranged from 0.4 mg-O3/L to 0.9 mg-O3/L for natural water with a dissolved organic carbon concentration of 2.4 mg-C/L. The UVA254 was found to be an effective parameter for estimation of rapid ozone decay for natural water under experimental conditions tested. The experimental setup consisted of a bench-scale plug flow reactor (approximately 100 L/h) with dissolved ozone dosing.  相似文献   

14.
The ozonation of wastewater supplied from a treatment plant (Samples A and B) and dye‐bath effluent (Sample C) from a dyeing and finishing mill and acid dye solutions in a semi‐batch reactor has been examined to explore the impact of ozone dose, pH, and initial dye concentration. Results revealed that the apparent rate constants were raised with increases in applied ozone dose and pH, and decreases in initial dye concentration. While the color removal efficiencies of both wastewater Samples A and C for 15 min ozonation at high ozone dosage were 95 and 97%, respectively, these were 81 and 87%, respectively at low ozone dosage. The chemical oxygen demand (COD) and dissolved organic carbon (DOC) removal efficiencies at several ozone dose applications for a 15 min ozonation time were in the ranges of 15–46% and 10–20%, respectively for Sample A and 15–33% and 9–19% respectively for Sample C. Ozone consumption per unit color, COD and DOC removal at any time was found to be almost the same while the applied ozone dose was different. Ozonation could improve the BOD5 (biological oxygen demand) COD ratio of Sample A by 1.6 times with 300 mg dm?3 ozone consumption. Ozonation of acid dyes was a pseudo‐first order reaction with respect to dye. Increases in dye concentration increased specific ozone consumption. Specific ozone consumption for Acid Red 183 (AR‐183) dye solution with a concentration of 50 mg dm?3 rose from 0.32 to 0.72 mg‐O3 per mg dye decomposed as the dye concentration was increased to 500 mg dm?3. © 2002 Society of Chemical Industry  相似文献   

15.
This study aims to establish appropriate conditions to control the formation of bromate ion and brominated organic compounds during the O3/H2O2 treatment of the secondary effluents of sewage. When the H2O2/O3 mole ratio of injection was above 0.5 and the dissolved ozone concentration was below 0.1 mg/L, bromate ion formation was controlled, and treatment purposes such as the reduction of estrogenic activity or organic matter were completed. The formation of TOBr and individual brominated organic compounds during O3/H2O2 treatment was also completely controlled.  相似文献   

16.
Removal efficiencies of endocrine disrupting chemicals (EDCs), bisphenol A and nonylphenol, during various types of water treatment processes were evaluated extensively using laboratory- and pilot-scale experiments. The specific processes of interest were coagulation/flocculation sedimentation/filtration (conventional water treatment process), powdered activated carbon (PAC), granular activated carbon (GAC), ozonation and chlorination. Batch sorption tests, coagulation tests, and ozone oxidation tests were also performed at higher concentrations with 14 EDCs including bisphenol A. The conventional water treatment process had very low removal efficiencies (0 to 7%) for all the EDCs except DEHP, DBP and DEP that were removed by 53%, 49%, and 46%, respectively. Ozonation at 1 mgO3/ L removed 60% of bisphenol A and 89% of nonylphenol, while chlorination at 1 mg/L removed 58% and 5%, respectively. When ozone and chlorine doses were 4 and 5 mg/L, respectively, both EDCs were not detected. PAC removal efficiencies ranged from 15% to 40% at 3 to 10 mg/L of PAC with a contact time of 15 minutes. In the high concentration batch sorption tests, EDC removal efficiencies by PAC were closely related to octanol-water partition coefficient (Kow). GAC adsorption was very effective water treatment process. The type and service time of GAC did not affect EDC removal efficiencies. The combination of ozonation and GAC in series appears to remove EDCs effectively to safe levels while conventional water treatment could not.  相似文献   

17.
An innovative approach to minimize bromate formation using sequential chlorine and ammonia (Cl2-NH3 process) was developed at pilot scale and validated in a full-scale drinking water facility. Pilot-scale results showed the Cl2-NH3 process minimized bromate formation by 65–95% compared to 40–70% using ammonia only. A 90-day full-scale evaluation confirmed the Cl2-NH3 process could prevent bromate concentrations from exceeding 10 μg/L. Full-scale implementation of the Cl2-NH3 process allowed an increase in ozone exposure level from 3.0 mg-min/L to 8.6 mg-min/L at 15.1°C. The increased exposure level is important as drinking water utilities strive to meet more stringent drinking water regulations such as Cryptosporidium inactivation.  相似文献   

18.
Ozonation is a widely used technology within the water industry. Bromate ion formed by oxidation of water containing bromide ion was studied with the Gas Ozone Test and Pilot Scale Ozonation. Bromate ion formation was investigated along with the removal of triazines and/or manganese. Under identical conditions of ozonation, BrO3 ? formation is specific for each water and depends on parameters such as Total Organic Carbon, UV absorbance at 254 nm, applied ozone and ozone residual. Pesticides degradation by ozonation alone cannot be achieved without the formation of BrO3 ? at a high concentration. Hydrogen peroxide, at a constant ozone dose, reduces the BrO3 ? formation. However, even with the use of hydrogen peroxide, the concentration of BrO3 ? can remain in excess of the provisional Maximum Contaminant Level (10 μg/L). For certain types of water, pesticide degradation is difficult to achieve if the MCL for BrO3 ? has to be met. Manganese oxidation by ozone appears to be achieved without high bromate formation; indeed the presence of manganese hinders BrO3 ? formation.  相似文献   

19.
Zone 7 of Alameda County Flood Control and Water Conservation District, in coordination with Black & Veatch, conducted a 9-month pilot study to determine preliminary design parameters for a new water treatment plant (WTP). The pilot study was performed to verify the performance of membrane filters and to establish preliminary design parameters for the submerged membrane process, followed by ozonation and biological granular activated carbon filtration. The pilot testing was conducted using water from the Patterson Pass WTP reservoir. The process included coagulation with either ferric chloride or polyaluminum chloride, flocculation, sedimentation, membrane filtration, ozonation, and filtration using biological granular activated carbon (BAC). The goals of the study were as follows:
  1. Determine the potential effectiveness of ozone and BAC for removing geosmin and MIB.

  2. Determine the impacts of different levels of pathogen inactivation, i.e., 0.5-log Giardia and 2-log virus inactivation.

  3. Monitor the formation of bromate under various conditions of ozone oxidation for different levels of pathogen inactivation as well as for taste and odor control, and evaluate bromate mitigation strategies, if necessary.

The results of the study showed that the use of ozone achieved 2.0-log virus inactivation and 0.5-log Giardia inactivation. It also decreased the disinfection by-product formation and effectively controlled geosmin and removed a significant fraction of the MIB during a taste and odor event. Because the raw water bromide concentrations were low, bromate formation remained below the regulated level of 0.010 mg/L. However, in one instance, bromate mitigation was utilized by applying sulfuric acid to lower the pH to less than 7.1, which reduced bromate formation to less than 0.010 mg/L.  相似文献   


20.
High-bromide raw water was ozonated or chlorinated with and without hydrogen peroxide to study the effect of the disinfectants on the disinfection by-product (DBP) formation. Less bromate was formed when ozonation was made at the ambient pH of 5.8 as compared to ozonation at pH 7, showing the effectiveness of pH reduction in controlling the bromate formation. When chlorine dose was 1 mg/L instead of 2.3 mg/L, the trihalomethane formation was 50 μg/L instead of >100 μg/L, and the proportional distribution of the trihalomethanes was similar. The use of ozone for this water could provide good results in respect of the DBP formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号