首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Self-assembling peptide nanofiber scaffolds have been studied extensively as biological materials for 3-dimensional cell culture and repairing tissue defects in animals. However, few studies have applied peptide nanofiber scaffolds in the tissue engineering of intervertebral discs (IVDs). In this study, a novel functionalized peptide scaffold was specifically designed for IVD tissue engineering, and notochordal cells (NCs) as an alternative cell source for IVD degeneration were selected to investigate the bioactive scaffold material. The novel RADA16-Link N self-assembling peptide scaffold material was designed by direct coupling to a bioactive motif link N. The link N nanofiber scaffold (LN-NS) material was obtained by mixing pure RADA16-I and RADA16-Link N (1:1) designer peptide solutions. Although live/dead cell assays showed that LN-NS and RADA16-I scaffold materials were both biocompatible with NCs, the LN-NS material significantly promoted NC adhesion compared with that of the pure RADA16-I SAP scaffold material. The depositions of aggrecan and type II collagen, which are significant markers for IVD cells, were remarkably increased. Furthermore, the results indicated that the link N motif, the matrix analog of the nucleus pulposus, significantly promoted the accumulation of other extracellular matrices in vitro. We conclude that the novel LN-NS material is a promising biological scaffold material, and may have a broad range of applications in IVD tissue engineering.  相似文献   

2.
Three-dimensional (3D) hydrogels incorporating a compendium of bioactive molecules can allow efficient proliferation and differentiation of cells and can thus act as successful tissue engineering scaffolds. Self-assembled peptide-based hydrogels can be worthy candidates for such applications as peptides are biocompatible, biodegradable and can be easily functionalized with desired moieties. Here, we report 3D growth and proliferation of mammalian cells (HeLa and L929) on a dipeptide hydrogel chemically functionalized with a pentapeptide containing Arg-Gly-Asp (RGD) motif. The method of functionalization is simple, direct and can be adapted to other functional moieties as well. The functionalized gel was noncytotoxic, exhibited enhanced cell growth promoting properties, and promoted 3D growth and proliferation of cells for almost 2 weeks, with simultaneous preservation of their metabolic activities. The presence of effective cell growth supporting properties in a simple and easy to functionalize dipeptide hydrogel is unique and makes it a promising candidate for tissue engineering and cell biological applications.  相似文献   

3.
A novel strategy is described for the preparation of polymeric hybrid hydrogels containing metal oxide nanoparticles as cross-linkers. TiO2 nanoparticles were functionalized by introducing amine groups onto their surfaces. The functionalized metal oxide nanoparticles were covalently bound to the polymer chains of carboxymethylcellulose and appeared to be organized as clusters with dimensions of 30 nm to 250 nm within the hydrogel. This synthesis method, based on the use of functionalized nanoparticles as cross-linkers, is of general application and it allows for the preparation of other kinds of nanoparticle/polymer hybrid hydrogels. These hybrid hydrogels may have potential applications as novel in vitro scaffolds for tissue engineering, in which the inorganic nanoparticles can simulate the nanostructured architecture of the extra-cellular matrix.  相似文献   

4.
Methylcellulose (MC), a water-soluble polymer derived from cellulose, was investigated as a possible temporary substrate having thermo-responsive properties favorable for cell culturing. MC-based hydrogels were prepared by a dispersion technique, mixing MC powder (2, 4, 6, 8, 10, 12 % w/v) with selected salts (sodium sulphate, Na2SO4), sodium phosphate, calcium chloride, or phosphate buffered saline, to evaluate the influence of different compositions on the thermo-responsive behavior. The inversion test was used to determine the gelation temperatures of the different hydrogel compositions; thermo-mechanical properties and thermo-reversibility of the MC hydrogels were investigated by rheological analysis. Gelation temperatures and rheological behavior depended on the MC concentration and type and concentration of salt used in hydrogel preparation. In vitro cytotoxicity tests, performed using L929 mouse fibroblasts, showed no toxic release from all the tested hydrogels. Among the investigated compositions, the hydrogel composed of 8 % w/v MC with 0.05 M Na2SO4 had a thermo-reversibility temperature at 37 °C. For that reason, this formulation was thus considered to verify the possibility of inducing in vitro spontaneous detachment of cells previously seeded on the hydrogel surface. A continuous cell layer (cell sheet) was allowed to grow and then detached from the hydrogel surface without the use of enzymes, thanks to the thermo-responsive behavior of the MC hydrogel. Immunofluorescence observation confirmed that the detached cell sheet was composed of closely interacting cells.  相似文献   

5.
Patel S  Kurpinski K  Quigley R  Gao H  Hsiao BS  Poo MM  Li S 《Nano letters》2007,7(7):2122-2128
Biodegradable nanofibers have tremendous potential for tissue repair. However, the combined effects of nanofiber organization and immobilized bioactive factors on cell guidance are not well understood. In this study, we developed aligned and bioactive nanofibrous scaffolds by immobilizing extracellular matrix protein and growth factor onto nanofibers, which simulated the physical and biochemical properties of native matrix fibrils. The aligned nanofibers significantly induced neurite outgrowth and enhanced skin cell migration during wound healing compared to randomly oriented nanofibers. Furthermore, the immobilized biochemical factors (as efficient as soluble factors) synergized with aligned nanofibers to promote highly efficient neurite outgrowth but had less effect on skin cell migration. This study shed light on the relative importance of nanotopography and chemical signaling in the guidance of different cell behavior.  相似文献   

6.
Tissue‐engineered hydrogels have received extensive attention as their mechanical properties, chemical compositions, and biological signals can be dynamically modified for mimicking extracellular matrices (ECM). Herein, the synthesis of novel double network (DN) hydrogels with tunable mechanical properties using combinatorial screening methods is reported. Furthermore, nanoengineered (NE) hydrogels are constructed by addition of ultrathin 2D black phosphorus (BP) nanosheets to the DN hydrogels with multiple functions for mimicking the ECM microenvironment to induce tissue regeneration. Notably, it is found that the BP nanosheets exhibit intrinsic properties for induced CaP crystal particle formation and therefore improve the mineralization ability of NE hydrogels. Finally, in vitro and in vivo data demonstrate that the BP nanosheets, mineralized CaP crystal nanoparticles, and excellent mechanical properties provide a favorable ECM microenvironment to mediate greater osteogenic cell differentiation and bone regeneration. Consequently, the combination of bioactive chemical materials and excellent mechanical stimuli of NE hydrogels inspire novel engineering strategies for bone‐tissue regeneration.  相似文献   

7.
Physical parameters (such as crosslinking density, crystallinity and mechanical properties) have been found to largely affect cellular behavior on polymer scaffolds. This study demonstrated that transparent pure Poly (vinyl alcohol) hydrogels prepared via a freeze–thaw method can be made to support cell adhesion by controlling physical parameters such as concentration and the number of freeze–thaw cycles. For a given number of freeze–thaw cycles, (specifically 45), polymer concentration dependent structural and mechanical properties (such as tensile strength and stiffness) were correlated with cell adhesion. The maximum cell attachment occurred on the hydrogels with the greatest mechanical properties, crystallinity and crosslinking density. The hydrogel surfaces were more favorable to human dermal fibroblasts than human lens epithelial cells and retained their transparency as well as dimensional stability with only a small degree of swelling. Fibroblast laden hydrogels showed extensive alkaline phosphatase activity which confirmed their healthy proliferation and function. In this manner, this study suggests that transparent Poly (vinyl alcohol) hydrogels prepared by the freeze thaw method described here should be further studied for numerous tissue engineering applications.  相似文献   

8.
To control specific endothelial cell (EC) functions, cell adhesive RGDS, EC specific REDV and YIGSR peptides, and angiogenic SVVYGLR sequences were covalently immobilized onto polyethylene terephthalate (PET) surfaces for the purpose of cell culture. X-ray photoelectron spectroscopy, atomic force microscopy, fluorescence microscopy and contact angle measurement were employed for characterization of surface modifications. The peptide density on PET surfaces was evaluated by fluorescence microscopy. The surfaces immobilized with peptides were exposed to human umbilical vein endothelial cells to study their specific effects onto EC functions. The results showed that the surface functionalized by these peptides enhanced the EC adhesion, spreading and migration as compared with native PET surfaces. Specifically, the RGDS peptides induced more cell adhesion than other peptides. The YIGSR and SVVYGLR sequences induced more cell spreading and cell migration, represented by intense focal adhesion at the leading edges of cell spreading and migration. The bi-functionalization of RGDS and SVVYGLR peptides (MIX) combined the advantages of both peptides and induced significant EC adhesion, spreading and migration. Our study indicates that the surface functionalization by peptides specific for ECs, especially the combination of RGDS with SVVYGLR or YIGSR peptides, has potential applications in promoting endothelialization of vascular prostheses and for construction of vascularized tissues in tissue engineering.  相似文献   

9.
Tissue engineering focuses on repairing tissue and restoring tissue functions by employing three elements: scaffolds, cells and biochemical signals. In tissue engineering, bioactive material scaffolds have been used to cure tissue and organ defects with stem cell-based therapies being one of the best documented approaches. In the review, different biomaterials which are used in several methods to fabricate tissue engineering scaffolds were explained and show good properties (biocompatibility, biodegradability, and mechanical properties etc.) for cell migration and infiltration. Stem cell homing is a recruitment process for inducing the migration of the systemically transplanted cells, or host cells, to defect sites. The mechanisms and modes of stem cell homing-based tissue engineering can be divided into two types depending on the source of the stem cells: endogenous and exogenous. Exogenous stem cell-based bioactive scaffolds have the challenge of long-term culturing in vitro and for endogenous stem cells the biochemical signal homing recruitment mechanism is not clear yet. Although the stem cell homing-based bioactive scaffolds are attractive candidates for tissue defect therapies, based on in vitro studies and animal tests, there is still a long way before clinical application.  相似文献   

10.
In the present study we report the preparation, characterization and cytocompatibility of novel polymeric systems based on blends of chitosan and poly(vinyl alcohol) (PVA) and chemically crosslinked by glutaraldehyde for biomedical applications. The structure of the hydrogels was characterized through Fourier Transform Infrared spectroscopy (FTIR) and their swelling behavior was investigated as preliminary in vitro test. Bioactivity, cytotoxicity and cell viability were assessed via MTT assay with 2 cell cultures and cell spreading-adhesion analysis. Moreover, the cell viability and potential biocompatibility were assessed by the secretion of nitric oxide by activated macrophages with gamma interferon (IFN-γ) cytokine and lipopolysaccharide (LPS). It was found that by increasing the chitosan to PVA ratio the swelling behavior was significantly altered. In addition, all tested hydrogels have clearly presented adequate cell viability, non-toxicity and suitable properties which can be tailored for prospective use in tissue engineering.  相似文献   

11.
The synthesis of hybrid hydrogels by pH‐controlled structural transition with exceptional rheological properties as cellular matrix is reported. “Depsi” peptide sequences are grafted onto a polypeptide backbone that undergo a pH‐induced intramolecular O–N–acyl migration at physiological conditions affording peptide nanofibers (PNFs) as supramolecular gelators. The polypeptide–PNF hydrogels are mechanically remarkably robust. They reveal exciting thixotropic behavior with immediate in situ recovery after exposure to various high strains over long periods and self‐repair of defects by instantaneous reassembly. High cytocompatibility, convenient functionalization by coassembly, and controlled enzymatic degradation but stability in 2D and 3D cell culture as demonstrated by the encapsulation of primary human umbilical vein endothelial cells and neuronal cells open many attractive opportunities for 3D tissue engineering and other biomedical applications.  相似文献   

12.
With advances in tissue engineering, the possibility of regenerating injured tissue or failing organs has become a realistic prospect for the first time in medical history. Tissue engineering – the combination of bioactive materials with cells to generate engineered constructs that functionally replace lost and/or damaged tissue – is a major strategy to achieve this goal. One facet of tissue engineering is biofabrication, where three‐dimensional tissue‐like structures composed of biomaterials and cells in a single manufacturing procedure are generated. Cell‐laden hydrogels are commonly used in biofabrication and are termed “bioinks”. Hydrogels are particularly attractive for biofabrication as they recapitulate several features of the natural extracellular matrix and allow cell encapsulation in a highly hydrated mechanically supportive three‐dimensional environment. Additionally, they allow for efficient and homogeneous cell seeding, can provide biologically‐relevant chemical and physical signals, and can be formed in various shapes and biomechanical characteristics. However, despite the progress made in modifying hydrogels for enhanced bioactivation, cell survival and tissue formation, little attention has so far been paid to optimize hydrogels for the physico‐chemical demands of the biofabrication process. The resulting lack of hydrogel bioinks have been identified as one major hurdle for a more rapid progress of the field. In this review we summarize and focus on the deposition process, the parameters and demands of hydrogels in biofabrication, with special attention to robotic dispensing as an approach that generates constructs of clinically relevant dimensions. We aim to highlight this current lack of effectual hydrogels within biofabrication and initiate new ideas and developments in the design and tailoring of hydrogels. The successful development of a “printable” hydrogel that supports cell adhesion, migration, and differentiation will significantly advance this exciting and promising approach for tissue engineering.  相似文献   

13.
Investigation of novel biomaterials for bone engineering is based on the development of porous scaffolds, which should match the properties of the tissue that is to be replaced. These materials need to be biocompatible, ideally osteoinductive, osteoconductive, and mechanically well-matched. In the present paper, we report the preparation and characterization of hybrid macroporous scaffold of polyvinyl alcohol (PVA)/bioactive glass through the sol–gel route. Hybrids containing PVA (80, 70 and 60 wt%) and bioactive glass with composition 58SiO2–33CaO–9P2O5 were synthesized by foaming a mixture of polymer solution and bioactive glass via sol–gel precursor solution. PVA with two different degree of hydrolysis (DH), 98.5% (high degree) and 80% (low degree) were also investigated, in order to evaluate the influence of residual acetate group present in polymer chain on the final structure and properties of 3D porous composite produced. The microstructure, morphology and crystallinity of the hybrid porous scaffolds were characterized by X-ray diffraction (XRD), Infrared Fourier Transform spectrometry (FTIR) and Scanning electron microscopy (SEM/EDX) analysis. In addition, specific surface area was assessed by B.E.T. nitrogen adsorption method and mechanical behavior was evaluated by compression tests. Preliminary cytotoxicity and cell viability were also performed by the MTT assay. VERO cell monolayers were grown in 96-well microtiter plates. The results have clearly showed that hybrid foams of polyvinyl alcohol/bioactive glass (PVA/BG) with interconnected macroporous 3D structure were successfully produced. All the tested hybrids of PVA/BG have showed adequate cell viability properties for potential biological applications.  相似文献   

14.
Cell migration is an essential bioactive ceramics property and critical for bone induction, clinical application, and mechanism research. Standardized cell migration detection methods have many limitations, including a lack of dynamic fluid circulation and the inability to simulate cell behavior in vivo. Microfluidic chip technology, which mimics the human microenvironment and provides controlled dynamic fluid cycling, has the potential to solve these questions and generate reliable models of cell migration in vitro. In this study, a microfluidic chip is reconstructed to integrate the bioactive ceramic into the microfluidic chip structure to constitute a ceramic microbridge microfluidic chip system. Migration differences in the chip system are measured. By combining conventional detection methods with new biotechnology to analyze the causes of cell migration differences, it is found that the concentration gradients of ions and proteins adsorbed on the microbridge materials are directly related to the occurrence of cell migration behavior, which is consistent with previous reports and demonstrates the effectiveness of the microfluidic chip model. This model provides in vivo environment simulation and controllability of input and output conditions superior to standardized cell migration detection methods. The microfluidic chip system provides a new approach to studying and evaluating bioactive ceramics.  相似文献   

15.
In order to harmonize the functions of both anticoagulation and accelerating endothelialization simultaneously, the micropatterns were fabricated by photoimmobilizing heparin, functionalized with a photoreactive moiety, on 3-aminopropylphosphonic acid modified titanium oxide (Ti–O) substrates. The amount of heparin immobilized on the surfaces was determined using the toluidine blue assay. And the surface morphology of the patterns was examined using scanning electron microscopy and surface profiler. The platelet adhesion and endothelial cell behavior in terms of adhesion, proliferation, and orientation were investigated in vitro. It is clear that the heparin patterns can reduce the platelet adhesion, and promote endothelial cells spreading and proliferation compared to nonpatterned heparin sample. Furthermore, the microstripes with appropriate size can induce the cells to elongate and arrange along the stripe direction. This may suggest a new modification method for blood-contacting device.  相似文献   

16.
Central nervous system (CNS) presents a complex regeneration problem due to the inability of central neurons to regenerate correct axonal and dendritic connections. However, recent advances in developmental neurobiology, cell signaling, cell--matrix interaction, and biomaterials technologies have forced a reconsideration of CNS regeneration potentials from the viewpoint of tissue engineering and regenerative medicine. The applications of a novel tissue regeneration-inducing biomaterial and stem cells are thought to be critical for the mission. The use of peptide nanofiber hydrogels in cell therapy and tissue engineering offers promising perspectives for CNS regeneration. Self-assembling peptide undergo a rapid transformation from liquid to gel upon addition of counterions or pH adjustment, directly integrating with the host tissue. The peptide nanofiber hydrogels have mechanical properties that closely match the native central nervous extracellular matrix, which could enhance axonal growth. Such materials can provide an optimal three dimensional microenvironment for encapsulated cells. These materials can also be tailored with bioactive motifs to modulate the wound environment and enhance regeneration. This review intends to detail the recent status of self-assembling peptide nanofiber hydrogels for CNS regeneration.  相似文献   

17.
The design of nano- and microstructures based on self-organization is a key area of research in the search for new materials, and it has a variety of potential applications in tissue engineering scaffolds. We have reported a honeycomb-patterned polymer film (honeycomb film) with highly regular pores that is formed by self-organization. This study describes the behavior of vascular endothelial cells (ECs) on honeycomb films with four different pore sizes (5, 9, 12, and 16 microm) as well as on a flat film. We examined the influence of the honeycomb pattern and pore size on cell behavior. The changes in cell morphologies, actin filaments, vinculin clusters, cell proliferation, and secreted extracellular matrix (ECM) (fibronectin, laminin, type IV collagen, and elastin) production profiles were observed by using optical, fluorescence, and scanning electron microscopy. The ECs that adhered to the flat film showed an elongated morphology with random orientation; the actin filaments and focal adhesions were not conspicuous. On the other hand, the ECs on the honeycomb films exhibited greater spreading and flattening; the degree of spreading of the ECs increased with an increase in the pore size. The actin filaments and focal adhesions appeared conspicuous, and the focal adhesions localized along the edge of the honeycomb pores were distributed over the entire projected cell area. The honeycomb film with a pore size of 5 microm showed the highest cell proliferation and ECM production profiles. These results suggest that the honeycomb film is a suitable material for designing a new vascular device.  相似文献   

18.
Traditional tissue regeneration approaches to activate cell behaviors on biomaterials rely on the use of extracellular-matrix-based or soluble growth-factor cues. In this article, a novel approach is highlighted to dynamically steer cellular phenomena such as cell motility based on nanoscale substratum features of biological ligands. Albumin-derived nanocarriers (ANCs) with variable nanoscale-size features are functionalized with fibronectin III9-10 matrix ligands, and their effects on primary human keratinocyte activation are investigated. The presentation of fibronectin fragments from ANCs significantly enhances cell migration as compared to free ligands at equivalent concentrations. Notably, cell migration is influenced by the size of the underlying ANCs even for variably sized ANCs covered in comparable levels of fibronectin fragment. For equivalent ligand concentrations, cell migration on the smaller-sized ANCs (30 and 50 nm) is significantly enhanced as compared to that on larger-sized ANCs (75 and 100 nm). In contrast, the enhancement of cell migration on nanocarriers is abolished by the use of immobilized, biofunctionalized ANCs, indicating that "dynamic" nanocarrier internalization events underlie the role of nanocarrier geometry on the differential regulation of cell migration kinetics. Uptake studies using fluorescent ANCs indicate that larger-sized ANCs cause delayed endocytic kinetics and hence could present barriers for internalization during the cell adhesion and motility processes. Motile cells exhibit diminished migration upon exposure to clathrin inhibitors, but not caveolin inhibitors, suggesting the role of clathrin-mediated endocytosis in facilitating cell migratory responsiveness to the nanocarriers. Overall, a monotonic relationship is found between the nanocarrier cytointernalization rate and the cell migration rate, suggesting the possibility of designing biointerfacial features for the dynamic control of cell migration. Thus, the functionalization of a mobile nanocarrier by a biorelevant ligand can be used to sensitize cellular motility activation to the adhesion ligands, and such nanocarrier interfaces can dynamically attune cell migration kinetics by modulating the uptake of the ligand-nanocarrier complex via nanocarrier size.  相似文献   

19.
The restricted porosity of most hydrogels established for in vitro 3D tissue engineering applications limits embedded cells with regard to their physiological spreading, proliferation, and migration behavior. To overcome these confines, porous hydrogels derived from aqueous two-phase systems (ATPS) are an interesting alternative. However, while developing hydrogels with trapped pores is widespread, the design of bicontinuous hydrogels is still challenging. Herein, an ATPS consisting of photo-crosslinkable gelatin methacryloyl (GelMA) and dextran is presented. The phase behavior, monophasic or biphasic, is tuned via the pH and dextran concentration. This, in turn, allows the formation of hydrogels with three distinct microstructures: homogenous nonporous, regular disconnected-pores, and bicontinuous with interconnected-pores. The pore size of the latter two hydrogels can be tuned from ≈4 to 100 µm. Cytocompatibility of the generated ATPS hydrogels is confirmed by testing the viability of stromal and tumor cells. Their distribution and growth pattern are cell-type specific but are also strongly defined by the microstructure of the hydrogel. Finally, it is demonstrated that the unique porous structure is sustained when processing the bicontinuous system by inkjet and microextrusion techniques. The proposed ATPS hydrogels hold great potential for 3D tissue engineering applications due to their unique tunable interconnected porosity.  相似文献   

20.
The lack of angiogenesis in ischemic tissues is a major health problem and many studies aim to explore strategies to locally increase blood perfusion. Our approach is to use covalently modified fibrin‐based hydrogels as a matrix that induces endothelial cell survival in vitro and angiogenesis in vivo. Fibrin hydrogels were covalently modified by L1Ig6, a specific receptor for cell survival integrin αvβ3 that is expressed on angiogenic endothelial cells. In addition, L1Ig6‐modified matrices were filled with growth factors VEGF‐A165 or bFGF. These hydrogels were applied on growing shell‐free chicken chorioallantoic membranes (CAMs) and the developing vasculature was found to be increased by ∼50 %. Moreover, the increase in αv‐integrin levels in the CAMs underlying the hydrogel implants were investigated and found to be increased by ∼40 % and ∼100 %, respectively, after CAM stimulation with L1Ig6 alone or in combination with growth factors VEGF‐A165 and bFGF. Therefore, modified fibrin hydrogels provide an interesting way to design an implant that can be introduced at the site of ischemia, and provides a scaffold and release system for growth factors that induce specific tissue responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号