首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The performance of the O3, O3/UV and UV/H2O2 processes for degradation of six chlorophenols (4-chlorophenol, 2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol and pentachlorophenol) were studied in laboratory reactors. Comparative study showed that chlorophenols can be degraded successfully by all of the methods studied, whilst traditional ozonation at high pH was determined to be the most effective method to treat chlorophenols. Even though the molar absorptivity of chlorophenols is known to be relatively high in the UV-region, the combination of UV-radiation with ozone did not accelerate the degradation of chlorophenols further. The toxicity of degradation products formed during ozonation of chlorophenols has been compared with the toxicity of pure chlorophenols utilizing Daphnia magna 24 hours test. Ozonation of chlorophenols yielded less toxic or even nontoxic products for Daphnia magna compared with parent compounds.  相似文献   

2.
This work aims to analyze the contribution of H2O2 on ozonation of Sulfamethoxazole (SMX). A single ozonation was able to totally remove SMX. TOC and COD depletion rates after a transferred ozone dose of 60 mg/L was related to the formation and decomposition of H2O2. An increase on O3 gas inlet concentration from 10 g/m3 to 20 g/m3 improved COD abatement from 11% to 36%. When the presence of H2O2 at the beginning of ozonation was tested, it was verified that COD and TOC degradation were enhanced, attaining maximum values of 76% and 32%, respectively, when compared with 35% and 15% reached in a single ozonation.  相似文献   

3.
The present study investigates the decomposition of N-Methyl-2-Pyrolidone (NMP) using conventional ozonation (O3), ozonation in the presence of UV light (UV/O3), hydrogen peroxide (O3/H2O2), and UV/H2O2 processes under various experimental conditions. The influence of solution pH, ozone gas flow dosage, and H2O2 dosage on the degradation of NMP was studied. All ozone-based advanced oxidation processes (AOPs) were efficient in alkaline medium, whereas the UV/H2O2 process was efficient in acidic medium. Increasing ozone gas flow dosage would accelerate the degradation of NMP up to certain level beyond which no positive effect was observed in ozonation as well as UV light enhanced ozonation processes. Hydrogen peroxide dosage strongly influenced the degradation of NMP and a hydrogen peroxide dosage of 0.75 g/L and 0.5 g/L was found to be the optimum dosage in UV/H2O2 and O3/H2O2 processes, respectively. The UV/O3 process was most efficient in TOC removal. Overall it can be concluded that ozonation and ozone-based AOPs are promising processes for an efficient removal of NMP in wastewater.  相似文献   

4.
Dimethyl sulfoxide (DMSO) is extensively used in industry and a large amount of wastewater that contains DMSO is discharged. This investigation evaluates the feasibility and effectiveness of the use of UV, O3 and UV/O3 to degrade aqueous DMSO. DMSO oxidation tests were performed with initial DMSO concentrations of 400–890 mg/L, at various ozone dosages (5.44, 8.25, 12.80 mg/L.min), solution pH values (acidic, alkaline, uncontrolled), and UV irradiation power intensities (0 and 2.25 W/L). Experimental results demonstrated that acidic conditions favored the degradation of DMSO and increased the mass of DMSO decomposition per unit mass of ozone consumption, in both the presence and the absence of UV. DMSO exhibited zero-order degradation kinetics when sufficient ozone was supplied. The cost of the ozone or UV/ozone process per unit volume of wastewater with a DMSO concentration of 2500 mg/L is comparable to that of the UV/H2O2-biological and electrolysis-biological processes described in the literature.  相似文献   

5.
CATAZONE is a new process of heterogeneous catalytic ozonation in which water is ozonated in the presence of a solid catalyst composed of titanium dioxide. The efficiency of this O3/TiO2 system has been compared to the two well-known oxidant systems: ozone alone and ozone combined with hydrogen peroxide.

This comparison was undertaken on three models of natural organic compounds : an aquatic fulvic acid, a protein and a disaccharide. The first results showed the following order of relative efficiency: O3/TiO2 > O3/H2O2 > O3 as far as Total Organic Carbon (TOC) removal was concerned.  相似文献   


6.
This paper reports a study using ozone (O3) and combined ozone/ultraviolet (O3/UV) processes for color removal and caffeine degradation from synthetic coffee wastewater using a second-order response surface methodology (RSM) with a three-level central composite face-centered (CCF) design. The effects of O3 concentration, initial pH, and reaction time were examined for both processes. The reaction time and pH were statistically significant for caffeine degradation and color removal. In the ozonation process, higher caffeine degradation and color removal were observed in alkaline pH, indicating that ozone attacks indirectly, consequently generating hydroxyl radicals. Regarding the ozone/UV process, it was observed that lower caffeine degradation and color removal occurred at neutral pH, indicating an adverse effect due to lower ozone dissolution and consequently the production of a smaller amount of free hydroxyl radicals. The achieved results showed that the techniques were efficient for color removal (85% and 99%, respectively) and caffeine degradation (88% and 98%, respectively).  相似文献   

7.
This article presents experimental investigation on the oxidative treatment of phenol in water by O3/H2O2 in a rotating packed bed (RPB). It was found that the phenol degradation ratio increased with increasing rotation speed, initial pH value of phenol solution, and temperature. The degradation ratio of phenol had a peak value with increasing H2O2 concentration. The optimum operating conditions in this study were determined as an H2O2 concentration of 6.5 mM and a rotation speed of 1200 rpm. Phenol degradation ratio reached 100% at an initial phenol concentration of 40 mg/L in the O3/H2O2 process.  相似文献   

8.
Disinfection of anaerobically treated effluent (UASB) was carried out to eliminate the enteric pathogens by using UV irradiation, peracetic acid, H2O2, O3 and advanced oxidation processes (O3/H2O2, O3/UV and H2O2/UV). Re-growth potential of these pathogens was monitored in terms of time and temperature. Inactivation of pathogens by ozone at the rate of 300 mg/h for 20 minutes approached 99%. UV irradiation resulted in 99% pathogen removal at irradiation time of 120 seconds. A dose of 170 mg/L H2O2 eliminated more than 99% pathogens. Samples disinfected with UV, H2O2 and O3 showed gradual re-growth with an increase in time and temperature (from 20 to 35°C). However, disinfection with AOPs proved to be the most effective tool resulting in reduction of treatment time taken by individual processes, also the disinfected samples showed minimal re-growth revealing the superiority of their combined effects.  相似文献   

9.
The combination of ozonation with UV irradiation can remove Tropaeolin O (AO6) and its by-products effectively and completely. The ozone dose affects the rate of decolorization, AO6 species removal, and dissolved organic carbon (DOC) reduction significantly. After 240 minutes of ozonation, the average DOC removal efficiency (ηDOC) for O3 alone was about 0.79, while ηDOC for O3/UV was 1.0. The average DOC removal rate was low at early stage of ozonation due to decolorization and low DOC. At later stage of ozonation, average DOC removal rate decreases because of the formation of persistent intermediates. The ozone consumption was consistent with ηDOC. The ratio of ozone consumption to ozone applied decreased from 14 to 12% when ηDOC < 40% because the decolorization in the early stage of the ozonation of AO6 may consume a relatively large amount of ozone. It was found that NO2, NO, CO2, and small amount of SO2 was detected in the off-gas. The effective concentration (EC50) increased from 23.48% to 100%, suggesting that the toxic reduction was achieved, and O3/UV system was superior to O3 alone system  相似文献   

10.
Chemical oxygen demand (COD) removal rates of sulfosalicylic acid (SSal) degraded by three advanced oxidation processes (AOPs): O3/UV, O3/TiO2/UV and O3/V-O/TiO2 are compared in this paper. (V = Vanadium). The results show that O3/V-O/TiO2 is the most effective process among three AOPs and the order of degradation efficiencies at different pH values is shown as O3/V-O/TiO2 > O3/TiO2/UV > O3/UV. For example, at the buffered solution of pH 6.8, the COD removal rate of O3/V-O/TiO2 reaches 70% in 30 minutes, but those of O3/TiO2/UV and O3/UV are 55% and 47% at the same conditions, respectively. Furthermore, the effect of CO3 2 ?on the COD removal rates of three AOPs shows that O3/V-O/TiO2 and O3/TiO2/UV may be considerable promising methods to overcome the limitation of the presence of radical scavenger in solution. Both the adsorption of SSal on catalysts and other oxidants (atom oxygen, photo-generated hole) must be responsible for the above result.  相似文献   

11.
The article focuses on an assessment of adsorbable organic halides degradation during the process of conventional ozonation and advanced oxidation as far as the water containing bromides is concerned. The amount of AOX in the water examined varied from 59 to 105 μg Cl?/L, and the bromides concentration exceeded 200 μg Br?/L. The effects obtained by O3 and O3/UV methods were compared with the results achieved for the water which underwent only UV irradiation. The analysis of presented research results shows that out of the examined oxidation methods, in water of pH 6.8–9.5 and temperature of approximately 287 K, the highest degree of AOX decomposition, was achieved by UV irradiation of water, which was previously subjected to ozonation. However, when the ozone dose reached ≥ 0.3 mg O3/mg C in an alkaline environment, bromates were formed in amounts exceeding the maximum contaminant level in both processes.  相似文献   

12.
The decomposition of several non‐biodegradable phenols by the UV/O3 and ozonation processes was studied and compared under various solution pH values, O3 input mass flow rates and UV intensities to investigate the removal efficiencies of reactants and organic intermediates. The decomposition rate of phenols by the UV/O3 process was found to increase with increasing O3 input dosage, light intensity and solution pH value. The mineralization efficiencies of phenols in aqueous solution would be above 98% under adequate reaction conditions within three hours, but would be retarded for alkaline solutions because of the dissolution of CO2 formed by mineralization of phenols. The increment of ozone input dosage had little effect on the mineralization of organic intermediates at the latter course of the reaction. The order of the decomposition rate of the phenols used in this research was 2,4‐dichlorophenol > 2‐chlorophenol > 2‐nitrophenol for low and neutral pH solutions, whereas they were nearly alike for alkaline solutions. The two‐step consecutive kinetic model was found to fit well in modeling the behavior of species during the decomposition of phenols in aqueous solutions by the UV/O3 process.  相似文献   

13.
Acid Black 210 (AB-210) dye is one of the most black dyes used by the leather industry. In the present work, AB-210 degradation in aqueous solution by ozonation (O3) and ozonation with ultraviolet (UV) radiation (O3/UV) was investigated. The effects of pH, initial dye concentration and UV radiation were studied in laboratory scale. Removal was evaluated in terms of residual AB-210 concentration in the treated solution and mineralization efficiency was evaluated by total organic carbon (TOC) analysis. The results indicated that AB-210 is quickly degraded after 15 min but not totally mineralized. It was observed that dye removal of 100% was achieved at pH 3, 7, and 11, while mineralization was found to increase with the pH (55% at pH 11). Concerning UV-C radiation, it enhanced AB-210 degradation at pH 3 but did not reveal any significant effect at pH 7 and 11.  相似文献   

14.
The effect of UV radiation on the removal of formic, oxalic and maleic acids from water by metallic ion (Fe2+ or Cu2+)/H2O2 and metallic ion/O3 was studied and compared. The results showed that metallic ion/O3/UV has higher efficiency than metallic ion/H2O2/UV for oxalic acid removal. UV radiation significantly increases the efficiency of metallic ion/H2O2 for formic and maleic acids removal while its effect on the efficiency of metallic ion/O3 for formic acid removal is minor. However, at pH 2, O3 alone showed higher efficiency than metallic ion/H2O2/UV for formic acid removal. Contrary to the relative efficiency of metallic ions in the previous systems, Cu2+ exhibited higher rate than Fe2+ for the removal of the degradation products of maleic acid by O3. UV radiation exhibited a minor effect on the efficiency of Cu2+/O3, while it exhibited a large effect on the efficiency of Fe2+/O3 for the removal of the degradation products of maleic acid.  相似文献   

15.
The advanced chemical oxidation of raw and biologically pretreated textile wastewater by (1) ozonation, (2) H2O2 /UV − C oxidation and (3) sequential application of ozonation followed by H2O2 /UV − C oxidation was investigated at the natural pH values (8 and 11) of the textile effluents for 1 h. Analysis of the reduction in the pollution load was followed by total environmental parameters such as TOC, COD, UV–VIS absorption kinetics and the biodegradability factor, fB. The successive treatment combination, where a preliminary ozonation step was carried out prior to H2O2 /UV − C oxidation without changing the total treatment time, enhanced the COD and TOC removal efficiency of the H2O2 /UV − C oxidation by a factor of 13 and 4, respectively, for the raw wastewater. In the case of biotreated textile effluent, a preliminary ozonation step increased COD removal of the H2O2 /UV − C treatment system from 15% to 62%, and TOC removal from 0% to 34%. However, the sequential process did not appear to be more effective than applying a single ozonation step in terms of TOC abatement rates. Enhancement of the biodegradability factor (fB) was more pronounced for the biologically pretreated wastewater with an almost two‐fold increase for the optimized Advanced Oxidation Technologies (AOTs). For H2O2 /UV − C oxidation of raw textile wastewater, apparent zero order COD removal rate constants (kapp), and the second order OH· formation rates (ri) have been calculated. © 2001 Society of Chemical Industry  相似文献   

16.
This laboratory study was designed to investigate the degradation of 4-chloronitrobenzene ([CNB] = 2.4 × 10?6 mol L?1; pH = 7.5) by H2O2/UV and by O3/UV oxidation processes which involve the generation of very reactive and oxidizing hydroxyl free radicals. The effects of the oxidant doses (H2O2 or aqueous O3), liquid flow rate (or the contact time), and bicarbonate ions acting as OH· radical scavengers on the CNB removal rates were studied. For a constant oxidant dose, the results show that the O3/UV system appears to be more efficient than the H2O2/UV system to remove CNB because of the greatest rate of OH· generation by ozone photodecomposition compared to H2O2 photolysis. However, for a given amount of oxidant decomposed, the H2O2/UV oxidant system was found to be more efficient than O3/UV. Moreover, high levels of bicarbonate ions in solution (4 × 10?3 mol L?1) significantly decrease the efficiency of CNB removal by H2O2/UV and by O3/UV oxidation processes.  相似文献   

17.
Kinetics of competition between the ozone direct reaction with compounds in water, ozone-hydroperoxide ion reaction leading to free radicals in the O3/H2O2 process, and the photolysis of ozone in the O3/UV process are discussed in terms of diffusion and reaction times to establish conditions for these reactions to be competitive. Film theory and chemical kinetic concepts then are applied to estimate initial rates of ozone absorption and consumption, removal rates of compounds present in water, and the importance of the radical oxidation path versus direct ozone and/or photolysis reactions.  相似文献   

18.
The photocatalytic transformation of imazamox, a herbicide of imidazolinone family, is investigated in aqueous solution containing titanium dioxide, hydrogen peroxide or the combination of TiO2/H2O2 under simulated sunlight irradiation. The effect of parameters such as the amount of catalysts, the concentration of herbicide, and the pH were investigated by measurement of the rate constant of degradation. Experimental data obtained under different conditions describe the dependency of degradation rate on the above mentioned parameters. Consequently, kinetic parameters were experimentally determined and a pseudo-first-order kinetic was observed. Mulliken charge distributions calculated by the DFT method B3LYP/6–31+G(d) level of theory for key cationic, anionic and neutral structures of imazamox give interpretation for the dependency of photodegradation rate constant on pH. The degradation rate constants were always higher for the heterogeneous catalysis in reactions (TiO2/UV, TiO2/UV/H2O2) compared to the homogeneous systems (UV alone, H2O2/UV). In parallel, five photoproducts could be tentatively identified using Electrospray ionization Fourier transform ion cyclotron resonance mass spectroscopy based on precise chemical formula assignments.  相似文献   

19.
Ozonation and four types of advanced oxidation processes, including O3/H2O2, O3/UV, O3/H2O2/UV, and UV/H2O2, were evaluated for the treatment of contaminated groundwater at a Superfund site in Simpsonville, South Carolina using bench-scale, batch ozone and UV apparatuses. Although the contaminants of concern were 1,4-dioxane, 1,1-dichloroethene, and trichloroethene, several other chlorinated organics as well as tetrahydrofuran were found in the groundwater samples. The O3/H2O2 treatment with O3 and H2O2 doses of 6 and 1.5 mg/L, respectively, and the UV/H2O2 treatment with UV and H2O2 doses of 1,000 mJ/cm and 20 mg/L, respectively, were sufficient to degrade 200 µg/L of 1,4-dioxane, 110 µg/L of 1,1-dichloroethene, and 10 µg/L of trichloroethene below their performance standards of 10, 7, and 4 µg/L, respectively. Due to a high bromide concentration (0.35 mg/L) in the groundwater sample, bromate formation was found to be significant in ozone-based treatment, including O3/H2O2.  相似文献   

20.
A detailed investigation on photooxidation of linear alkyl benzene (LAB) industrial wastewater is presented in this study. The process analysis was performed by varying four significant independent variables including two numerical factors (initial pH (3–11) and initial H2O2 concentration (0–20 mM)) and two categorical factors (UV irradiation and ozonation). The experiments were conducted based on a central composite design (CCD) and analyzed using response surface methodology (RSM). To assess the process performance, two parameters viz. TCOD removal efficiency and BOD5/COD were measured throughout the experiments. A maximum reduction in TCOD was 58, 53, 51, and 49%, respectively for UV/H2O2/O3, H2O2/O3, UV/O3 and UV/H2O2 processes at the optimum conditions (initial pH of 7, initial H2O2 concentration of 100 mM, and reaction time of 180 min). A considerable increase in BOD5/COD ratio was obtained in the combined processes (0.46, 0.51, 0.53, and 0.55 for UV/H2O2, UV/O3, H2O2/O3 and UV/H2O2/O3, respectively) compared to the single oxidant process (0.35). The results showed that mineralization of the LAB industrial wastewater in neutral pH is more favored than in acidic and basic pH. Gas chromatography–mass spectrometry (GC–MS) was applied to show the fate of organic compounds. In conclusion, the photooxidation process (UV/H2O2/O3, H2O2/O3, UV/O3 and UV/H2O2) could be an appropriate pretreatment method prior to a biological treatment process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号