共查询到19条相似文献,搜索用时 62 毫秒
1.
为了充分利用多核处理器的硬件资源和计算能力来提高图像匹配应用的实时性,通过对自适应阈值SSDA图像匹配算法原理的分析,基于任务分解的多核并行编程模式思想,设计了一种自适应阈值SSDA图像匹配并行算法,并在多核计算机上采用OpenMP模型编程实现该并行算法,同时还进行了相关的代码优化。实验结果表明,优化后的并行算法在保持匹配算法精度的同时大大提高了匹配速度和多核利用率,取得了良好的效果。 相似文献
2.
在目前的图像匹配中,SSDA实时性好,但对图像灰度的线性变化非常敏感.鉴于此,提出一种基于SSDA(序贯相似度检测算法)的新算法.新算法提出差值矩阵的概念,消除了灰度线性变化的影响.首先将两幅图像同行的相邻像素进行灰度差值计算,获得差值矩阵,再将差值矩阵的元素按照隔点提取的方式进行序贯相似度计算,阈值自适应更新,获得最小阈值的子图像即为匹配图像.实验结果表明,该方法对图像灰度的线性变化有良好的鲁棒性,便于实时性的实现. 相似文献
3.
图像匹配作为一种重要的图像处理技术是图像信息融合、目标定位、变化检测等后续工作的重要基础。针对图像匹配应用的实时性要求,该方法按照由粗到细的过程完成匹配,对图像进行多尺度分解,针对高层分解结果图像,采用改进的基于灰度投影的匹配算法进行粗匹配,确定若干符合要求的粗匹配点,并将这些点映射到低层图像的相应区域,在最高层采用序贯相似性检测SSDA进行精细匹配。采用不同遥感图像的实验结果表明了方法的有效性。 相似文献
4.
5.
提出了基于改进SSDA算法的机器人视觉彩色目标识别方法,利用颜色分量的权重系数对SSDA算法进行了改进,同时,在图像特征提取时引入目标的形状和大小信息。实验表明,这些措施有效地减少了运算量,提高了目标识别的准确性,具有较好的实时性和鲁棒性。 相似文献
6.
7.
在图像匹配研究中,基于H ausdorff距离的检测(HD)和序贯相似度检测(SSDA)是比较常用的两种方法。介绍了HD和SSDA两种算法并分析了两者各自的优点与不足,在此基础上提出了一种新的图像匹配算法。该算法结合了SSDA和HD的优点,实验证明该算法在实时图像匹配过程中能使模板和图像达到更加快速有效的匹配。 相似文献
8.
9.
AKAZE特征检测算法具有鲁棒性好,匹配率高等特点,为解决其实时性差的问题,提出将ORB与AKAZE相结合的改进算法.利用oFAST算法检测特征点然后采用M-LDB算法计算其描述符,使用汉明距离进行图像粗匹配,最后用RANSAC算法剔除误匹配点,得出匹配结果.经反复的实验对比证明,改进后的算法与ORB算法相比匹配正确率... 相似文献
10.
为了解决尺度不变特征变换(SIFT)算法在图像匹配中匹配正确率低、耗时长等问题,提出一种基于改进网格运动统计特征RANSAC-GMS的图像匹配算法。首先,利用快速旋转不变性特征(ORB)算法对图像进行预匹配,对预匹配的特征点采用网格运动统计(GMS)来支持估计量以实现正确匹配点与错误匹配点的区分;然后,采用改进的随机抽样一致性(RANSAC)算法通过匹配点间的距离相似性对特征点进行筛选,并采用评价函数对筛选后的新数据集进行重新整理,进而实现对误匹配点的剔除。采用Oxford标准图库和现实中拍摄的图像对图像匹配算法进行测试对比,实验结果表明,所提算法在图像匹配中的平均匹配正确率达到91%以上;与GMS、SIFT、ORB等算法相比,该改进算法的近景匹配正确率和远景匹配正确率分别最少提高了16.15个百分点和3.56个百分点,说明它能有效剔除误匹配点,进一步提高图像匹配精度。 相似文献
11.
针对SIFT (scale invariant feature transform)算子在大幅复杂图像中提取的过多不稳定特征点及在只有少量重合区域下图像配准过程中出现的过多误匹配,导致图像配准精度下降;提出一种改进的SIFT算法,在对目标图像提取SIFT特征后,利用双向BBF(Best-Bin-First)匹配算法对提取的特征点进行匹配,采用SIFT描述子的尺度以及梯度方向信息建立最小邻域匹配剔除误匹配点,通过随机抽取一致性算法(RANSAC)进一步筛选匹配点,并利用最小二乘法结合多项式近似拟合出变换模型,利用局部均方根有效值(RMS)评价映射矩阵与实际图像的误差,找出并删除引起误差的误匹配点,迭代至配准图像符合评价标准后,计算出精确变换模型.实验结果表明,该算法提高了大幅复杂图像在少量重合区域时的配准精度. 相似文献
12.
电路板红外图像具有分辨率低、对比度低、信噪比低、视觉效果模糊的特点,目前的图像配准算法用于电路板红外图像配准时,运算时间长且匹配准确度低.针对电路板红外图像的特点,梳理了图像配准方面的国内外研究现状,分析了SIFT算法的基本原理,对原有的SIFT算法进行了修改.对特征点的提取方式进行了改进,减少了不必要的特征点;改进了... 相似文献
13.
针对KAZE算法对光照不均图像特征点提取效果不佳的问题,提出了一种基于纹理抑制改进后的KAZE图像配准算法。改进算法的主要流程如下:将纹理抑制算法嵌入到非线性扩散滤波方程中,以实现对图像更好的光照估计;对光照估计后图像的亮度分量进行自适应Gamma校正;利用改进的KAZE算法对图像进行配准。实验结果表明,改进算法相较于SIFT、SURF、KAZE算法的平均正确匹配率分别提高了48.5个百分点、22.1个百分点和20.1个百分点,查全率提高了26个百分点、5个百分点和5.5个百分点,所提算法能有效地降低误匹配,并且广泛地应用到多种处理场景中。 相似文献
14.
15.
16.
为了进一步提高彩色遥感图像的配准精度,针对遥感图像配准过程中色彩信息利用率低以及误匹配率高的问题,提出一种改进的SURF(Speeded Up Robust Feature)彩色遥感图像配准算法;该算法首先在对彩色遥感图像进行特征点检测基础上,对特征点描述算子进行改进,以使颜色空间变换后得到的特征点色彩信息添加到原描述算子中,并对特征点描述算子进行归一化处理,以增加算子的独特性和对旋转、尺度、光照的鲁棒性;其次,结合单向匹配和双向匹配的比值,提出了一种最优化阈值选择准则,如果欧氏距离比率小于最优化阈值,完成特征点匹配,得到正确匹配点对,再通过变换矩阵得到配准图像;实验结果表明,在保证实时性的条件下,该算法相比于原SURF算法,准确性和稳定性都有一定提高,具有一定的理论和应用价值。 相似文献
17.
异质图像配准是多源图像融合的关键步骤之一,通常需要精确提取和匹配图像的同名特征,这种同名特征在成像机理差异巨大的光学和SAR图像中进行提取和匹配十分困难,利用相同场景图像中的隐含相似性可以有效避开这一难点.为了对光学和SAR图像进行配准,提出了一种基于隐含相似性的光学和SAR图像配准方法,该算法首先选用高梯度幅值像素作为隐含特征点集,然后通过像素迁移来构建相似测度准则函数,并用遗传算法对准则函数解空间进行全局优化搜索来获取配准解,这样就将图像配准问题归于模型参数优化求解过程.实验结果表明,该方法有效可行,配准图像能达到像素级配准精度. 相似文献
18.
19.
基于光流场模型的图像配准方法计算简单快速,但采用原始光流场模型进行图像配准会使图像出现严重的模糊导致不能使用。提出了对原始光流场模型的正则项进行改进,同时引入运动模糊图像复原算法,改进的算法改善了原始光流场模型造成的图像模糊。实验结果表明,基于改进光流场模型的医学图像配准算法配准结果准确,具有较快的配准速度。 相似文献