首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
复合材料层合板冲击损伤影响因素分析   总被引:2,自引:1,他引:1       下载免费PDF全文
应用三维逐渐累积损伤理论和有限元分析技术对复合材料层合板的低能冲击过程进行了详细分析,研究了不同材料的冲头、不同复合材料体系和不同铺层方式对复合材料层合板冲击损伤的影响规律。研究结果可为更有效地进行复合材料抗冲击结构设计提供一定的指导。  相似文献   

2.
为研究玻璃纤维层合板抗冲击性能,利用落锤冲击实验机,以两种不同能量,对两种预制裂纹的玻璃纤维复合材料层合板进行低能量冲击;对实验中的冲击载荷、能量、位移和速度进行采集;对冲击损伤进行力学分析和对比;并对损伤形貌进行了SEM观察。结果显示:在相同能量冲击下,预制裂纹层合板冲击后的损伤程度与预制裂纹的大小和面积成线性关系;在不同能量冲击下,复合材料层合板具有不同的破坏结构,其主要损伤为基体开裂和层间分离。  相似文献   

3.
通过对复合材料典型层合板进行落锤冲击试验引入冲击损伤,并对冲击后的复合材料层合板进行不同载荷水平的压-压疲劳试验,得到了不同疲劳载荷作用下层合板损伤扩展规律及疲劳寿命。建立了冲击后层合板疲劳寿命有限元数值计算模型,对层合板进行冲击仿真,并利用有限元软件用户子程序编程,将冲击后计算所得损伤分布结果设置为层合板压—压疲劳寿命计算的起始状态,从而获得层合板在不同疲劳载荷水平下的损伤扩展结果及压—压疲劳寿命数值仿真结果。将试验与有限元数值计算疲劳寿命结果绘制了S-N曲线,通过对比验证了计算结果的准确性,形成一套复合材料层合板冲击后疲劳寿命预测数值计算模型。  相似文献   

4.
为研究复合材料受外力冲击的规律和冲击后疲劳的特性,分别使用200 m/s、300 m/s的冲击速度、直径4 mm、3 mm的钢珠以90°和30°入射角度冲击复合材料层合板,模拟外物损伤的过程,共设计了24组冲击试验和9组疲劳试验。根据结果比对冲击速度、冲击物大小、冲击角度对冲击损伤的影响,分别对复合材料层合板损伤的长度、宽度和深度进行研究。对冲击后的层合板进行拉伸疲劳试验,根据所得到的疲劳极限,建立冲击损伤长度、宽度、深度和疲劳强度的关系。结果表明:相对于冲击角度,冲击物大小变化对层合板损伤影响更大,冲击速度的影响最小;疲劳强度与损伤长度和宽度的相关性较为明显,而与损伤深度的相关性较小。  相似文献   

5.
基于复合材料经典层合板理论和冲击动力学理论,采用Chang -Chang损伤准则对受低速冲击后的复合材料缠绕层进行损伤判定,并进行相应的刚度折减,分析复合材料纤维缠绕压力容器在冲击载荷作用下的动态响应和损伤状况.结合动力松弛法分析冲击能量对不同工作压力下复合材料缠绕压力容器抗冲击性能的影响,并对压力容器不同部位的抗冲击敏感性进行了相应研究,预测出压力容器的缠绕层损伤特征和最不利的冲击位置.  相似文献   

6.
复合材料以其优异的综合性能,在航空航天和防护装备等领域得到广泛应用,胶接修补是复合材料出现损伤、破坏时优先使用的修补方法。对复合材料层合板胶接修补结构在冲击过程中的不同形状和尺寸补片对修补效果的影响,以及1号补片修补结构在修补过程中层合板材料失效情况进行了研究。层合板采用最大应力失效模式,并与已有文献进行对比,验证模型正确性。计算结果表明,在高速冲击过程中,在子弹穿透层合板之前,层合板发生纤维断裂失效,分层失效伴随整个冲击过程。补片的形状和尺寸对修补效果产生重要影响,其中2号补片修补效果最好。  相似文献   

7.
层合复合材料板的低速冲击损伤及剩余压缩强度研究   总被引:5,自引:0,他引:5  
针对复合材料层合板的冲击及冲击后的压缩破坏过程提出了一种全程分析方法。该方法应用三维逐渐累积损伤理论和分析技术,对层合板的冲击以及冲击后含损伤的层合板在压缩载荷下损伤扩展的全过程进行分析,分析中没有对冲击后层合板的损伤状态做人为假设,而是把冲击后层合板的预测损伤直接用于剩余压缩强度研究,从而不仅提高了最终失效载荷的预测精度,而且避免了为获得冲击后损伤状态参数所进行的大量试验,同时开发了模拟程序,该程序可以预测任意铺层角度、铺层厚度的层合板受外物冲击以及冲击后的损伤状态及在压缩载荷下的逐渐损伤破坏过程和最终失效载荷。通过与已有文献结果进行比较,验证了方法及程序的正确性。  相似文献   

8.
采用软化夹杂法来模拟低速冲击后层合板的压缩破坏。笔者用ABAQUS软件建立冲击损伤的有限元模型,模型将损伤区等效成一个圆形的软化夹杂,研究了不同的损伤深度对冲击后剩余压缩强度的影响;分析了层合板在压缩过程中,各单层的载荷分配情况;并且模拟了复合材料层合板从损伤开始到完全失去承载能力的压缩破坏全过程。计算结果表明:复合材料层合板冲击后的压缩破坏,损伤最早发生在冲击损伤区周围的±45°铺层,主要发生基体压缩损伤;在压缩载荷下,0°铺层主要的损伤形式是纤维的屈曲;90°铺层发生的主要损伤形式也是基体压缩损伤,但损伤的面积较小。  相似文献   

9.
参照标准试验方法,开展了层合板低速落锤冲击试验,获取了不同冲击能量下凹坑深度等试验数据,并对含冲击损伤层合板进行了剩余压缩强度试验。研究了凹坑深度-冲击能量、剩余压缩强度-凹坑深度的变化关系,并讨论了低速冲击过程中的损伤演变过程和层合板的压缩破坏模式。建立了层合板低速冲击损伤分析模型,分别采用Hashin失效准则和界面单元模拟单层失效与分层损伤,利用有限元分析了层合板低速冲击过程,得到了不同冲击能量下分层损伤面积。结果表明,凹坑深度可以较好地表征层合板抵抗冲击的能力,随着冲击能量的增大,剩余压缩强度随凹坑深度的增加而明显降低。有限元分析得到的分层损伤面积与含损伤层合板超声C扫描结果吻合较好。  相似文献   

10.
本文以复合材料层合板抗侵彻性能分析为目的,采用ABAQUS/Explicit建立了纤维增强复合材料层合板高速冲击有限元分析模型,结合Hashin失效准则进行损伤识别,给出了层合板在球形弹头冲击下的侵彻破坏特征和模态,获得了弹道极限速度。模拟结果与理论计算结果和已有实验结果吻合良好,证明了该方法合理有效,探讨了弹头形状、冲击速度和入射角等因素对层合板损伤的影响规律,获得了一些有价值的结论,可以为工程实际提供参考。  相似文献   

11.
张永明  李培宁 《压力容器》2011,(10):22-26,14
为研究纤维缠绕复合材料层CNG气瓶冲击后损伤容限问题,采用疲劳应变比率作为损伤变量,建立疲劳累积损伤模型;对气瓶缠绕层的冲击损伤剩余强度采用开孔等效计算方法,应用Nuismer—Whitney平均应力准则,关联疲劳累积损伤函数中的最大应力与拉伸载荷下的含孔层合板剩余强度的关系,建立适用于在疲劳载荷下的含孔层合板结构剩余强度的估算方法,用于复合材料CNG气瓶冲击剩余强度的预测。结果表明,文中提出的分析模型预测结果与专家提出的复合材料气瓶冲击损伤评定标准基本吻合。  相似文献   

12.
碳纤维复合材料假脚冲击与压缩强度试验*   总被引:1,自引:0,他引:1  
碳纤维复合材料已成功应用于假肢领域产品的开发,然而其对冲击载荷比较敏感,受冲击后其强度将会大幅下降。针对一种新型碳纤维复合材料假脚,开展自由落体冲击试验及冲击后压缩强度试验,分析不同铺层参数、不同冲击吸收能量等因素对其冲击损伤及剩余强度的影响规律。结果表明,对于碳纤维复合材料假脚的U形结构件,不同铺层参数对其冲击损伤影响显著,且随着0°铺层含量的增加,试件的冲击损伤面积越来越小,外观损伤越来越轻;随着冲击吸收能量的增加,碳纤维结构件的冲击损伤面积明显增大,剩余压缩强度逐渐降低。对于碳纤维复合材料假脚结构件,在0~16 J的低能冲击范围内,冲击吸收能量与其剩余压缩强度近似呈线性关系。随着0°铺层含量的增加,碳纤维复合材料结构件的剩余压缩强度逐渐提高。  相似文献   

13.
采用热压固化成型工艺,成功制备了玻璃纤维/PC树脂/铝合金叠层复合材料,并对该材料的界面结合状况与性能进行了分析。结果表明:通过对铝合金表面进行喷丸和酸腐蚀综合处理及对玻璃纤维进行0.5%硅烷偶联剂水溶液涂层处理,叠层复合材料各界面的结合状况良好;抗拉强度达到210.2MPa,抗弯强度达到325MPa,冲击韧度大于173.5kJ/m^2,其阻尼性能尤其突出,自由衰减率达到0.332,可与粘弹性阻尼材料媲美。  相似文献   

14.
含孔复合材料层合板在压缩载荷下的三维逐渐损伤   总被引:7,自引:1,他引:6  
通过逐渐损伤分析可以清楚地了解承载复合材料层合板内部损伤的产生及扩展过程,应用三维逐渐累积损伤理论和有限元分析技术,对不同材料不同宽孔比的含孔复合材料层合板在压缩载荷作用下的逐渐破坏过程进行分析,综合考虑了基体开裂、基纤剪切、分层及纤维断裂等四种复合材料层合板的主要破坏模式。在通用有限元分析软件ANSYS基础上进行二次开发,编制了参数化的分析模拟程序,该程序可以预测任意铺层角度和铺层厚度层合板在压缩载荷作用下的逐渐损伤破坏过程及最终失效载荷,通过与已有参考文献结果进行比较,验证了方法及程序的正确性。该程序可以较大程度地提高最终失效载荷的预测精度,为复合材料层合板结构的设计和使用提供了有力的技术支持。  相似文献   

15.
泡沫夹层复合材料的低速冲击损伤及剩余强度的数值模拟   总被引:2,自引:0,他引:2  
基于渐进累积损伤理论和数据传递分析方法,对泡沫夹层复合材料的低速冲击以及冲击后的压缩破坏过程提出了一种全程数值分析方法,即对泡沫夹层复合材料的冲击以及冲击后损伤的泡沫夹层复合材料在压缩载荷下损伤扩展的全过程进行数值模拟分析。结果表明:由于该方法避免了以往学者对冲击后夹层板损伤状态所做的人为假设,把冲击后的预测损伤直接传递用于剩余强度的研究,从而提高了最终破坏载荷和剩余强度的预测精度,数值模拟结果与已有试验结果吻合较好。  相似文献   

16.
17.
This paper deals with influence of particle volume fraction and debonding damage between particles and matrix on the stress-strain response in particle-reinforced ductile matrix composites. Tensile tests are carried out on seven kinds of glass-particle-reinforced nylon 66 composites, which are different in a particle volume fraction and treatment of interface between the particles and matrix. The stress-strain response of the composites depends on both the particle volume fraction and the interface treatment. Young's modulus and Poisson's ratio are characterized by only the particle volume fraction, while tensile strength depends on both the particle volume fraction and interface treatment. With increasing particle volume fraction, the tensile strength increases first and then becomes constant in the interface-treated composites, and decreases in the interface-untreated composites. Numerical analyses of the stress-strain response and damage behavior of the composites are carried out based on an incremental damage theory which describes the plasticity of the matrix and the debonding damage. The stress-strain relations of the interface treated composites are characterized only by influence of particle volume fraction while those of the interface-untreated composites are explained by considering the particle volume fraction and interfacial debonding.  相似文献   

18.
缝合复合材料拉伸性能影响因素研究   总被引:1,自引:0,他引:1  
根据缝合层合板中缝合损伤的细观特征,分析影响缝合材料拉伸性能的2个因素。鉴于2个因素的不同的特征,做出两种不同的假设,以T700/QY8911层合板材料为例,依据假设分别建立模型进行分析计算,并与实验结果对比,进而分析得出试样沿缝合针脚断裂,缝合在针脚处引起的纤维弯曲、纤维断裂等微观损伤是影响拉伸强度特性的主要因素,其中缝合前后复合材料弹性常数的变化主要和纤维断裂有关,而拉伸极限载荷的与两者都有关,且纤维弯曲对拉伸强度影响更大。  相似文献   

19.
碳纤维/玻璃纤维/石墨协同改性PTFE复合材料力学性能   总被引:2,自引:1,他引:2  
通过机械混合、冷压和烧结成型制备了碳纤维、玻璃纤维和石墨填充协同改性聚四氟乙烯(PTFE)复合材料。对比分析了不同样品的拉伸、冲击和压缩等力学性能。结果表明:玻纤和碳纤维使复合材料冲击强度下降;玻纤使复合材料拉伸强度下降,碳纤维则使复合材料拉伸强度稍有增强;玻纤和碳纤维均使复合材料压缩强度增加,但碳纤维的增强效果更为明显;石墨、玻纤和碳纤维协同增强PTFE复合材料的拉伸强度较高,弹性模量较大,断裂伸长率较高,抗压缩性能明显提高,且材料拉伸时呈塑性断裂,是综合力学性能较好的高性能润滑密封材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号