首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
分析了固体氧化物燃料电池(SOFC)的发展趋势以及电解质的制备和特性对SOFC的工作温度及导电性的影响,并对SOFC电解质材料的研究现状进行了详细阐述。介绍了热喷涂技术在SOFC电解质材料制备中的技术优势,综述了热喷涂技术在SOFC电解质层材料制备中的应用,并对其进行了总结和展望。通过分析相关研究成果,认为降低工作温度必然成为未来SOFC研究的主要方向之一,而开发更多在中、低温下具有高电导率的电解质材料是未来研究工作的关键。应用最广泛的高温SOFC电解质材料是萤石结构的氧化钇稳定氧化锆,而钙钛矿结构的掺杂镁和锶的镓酸镧是最有前景的中、低温SOFC电解质材料。热喷涂技术具有基体材料不受限制、沉积速度快、灵活、成本低等一系列优点,在SOFC电解质涂层的制备中得到了广泛应用。对于高温SOFC电解质涂层可采用等离子喷涂辅助后处理工艺或直接优化其工艺,从而获得高致密、高电导率的电解质涂层,而中、低温电解质层的热喷涂制备方面的研究还有较大的拓展空间。  相似文献   

2.
氧化钇稳定的氧化锆(YSZ)因其高热稳定性和良好的氧离子电导率被广泛地作为电解质材料应用于固体氧化物燃料电池(SOFC)。常规的平面SOFC电解质制备技术,如带式流延或丝网印刷,需要在1300℃以上的温度下进行烧结,因此采用传统制备技术获得纳米结构电解质层是一个挑战。等离子喷涂-物理气相沉积(PS-PVD)作为一种新技术由于可以实现气相沉积可以提供快速、低成本的方法来制备纳米致密结构电解质层,可避免传统技术在长时间高温烧结引起的材料晶体结构变化以及相邻电极材料间的化学反应。PS-PVD技术具有与传统大气等离子喷涂(APS)完全不同的沉积机制。本研究采用该技术成功地制备了致密的纳米结构7YSZ薄电解质层。当电解质层厚度为8.7~12.3 μm时,其泄露率为2.24~2.29 10-8 cm4gf-1s-1.  相似文献   

3.
等离子喷涂技术可以对陶瓷涂层的微观结构进行调控设计,因此在制备固体氧化物燃料电池方面具有独特的优势。基于等离子喷涂方法,可以直接制备或经过后处理获得致密的电解质涂层。采用等离子喷涂技术也可以制备高性能的多孔阳极和阴极,并可对钙钛矿结构阴极材料的成分和晶体结构进行调控。文中介绍了目前国内外采用涂层制备电池的方法,主要探讨了热喷涂方法制备电解质涂层的特点,对存在的问题和可行思路进行了讨论,并探讨了基于提高三相反应界面长度来制备高性能电极的方法。由于固体氧化物燃料全电池各功能层都有可能通过热喷涂方法制备,因此该方法在固体氧化物燃料电池结构设计具有巨大的潜力。  相似文献   

4.
开发在中、低温下具有高电导率的电解质材料是未来发展低成本固体氧化物燃料电池(SOFC)的重要方向。掺杂氧化铈(DCO)在500~700 ℃时,具有良好的导电性能,其离子电导率远远高于同温度下氧化钇稳定的氧化锆(YSZ)电解质材料,因此其成为中温SOFC电解质材料应用与研究的重点。但DCO在还原气氛下Ce4+部分还原为Ce3+,会引起电子电导增加、制造成本提高、开路电压降低等问题。针对这些问题,大量研究通过稀土或碱金属掺杂、电解质复合进行了探索,发现掺杂和多相电解质复合有助于提高DCO的离子电导率和稳定性。在概述锆基固体电解质、Bi2O3基电解质、LaGaO3基氧化物、CeO2基氧化物等SOFC电解质的基础上,重点综述了单掺杂、双掺杂和多掺杂的氧化铈电解质,同时综述了掺杂氧化铈-碳酸盐复合电解质和两种电解质复合的电解质材料的研究进展。另外,介绍了流延、丝网印刷、浆料涂覆、电泳沉积、喷雾热解、溅射、大气等离子喷涂、激光脉冲沉积等制膜方法,在铈基电解质膜制备方面的应用。最后,对铈基电解质的发展前景和方向进行了展望。  相似文献   

5.
等离子喷涂技术在固体氧化物燃料电池中的应用   总被引:4,自引:0,他引:4  
介绍了等离子喷涂制备固体氧化物燃料电池(SOFC)中的电解质、阴阳极及其功能组件的研究进展,分析了其中的关键技术.研究表明:采用等离子喷涂,通过选择适当的粉末原料,工艺优化和改进送粉方式,可以得到满足SOFC要求的致密电解质,多孔阴极和阳极.三者的厚度均为30~50 μm,SOFC总厚度低于100~120μm,可以将固体氧化物燃料电池的运行温度降低到中温800℃下的范围,降低电池运行温度,从而降低了对相关材料的要求和运行成本.  相似文献   

6.
SOFC阴极微观结构优化是解决中低温SOFC所面临的阴极材料催化活性下降的重要手段之一。本文采用等离子弧喷涂方法制备SOFC阴极,通过微观组织结构、成分分布等分析其微观结构特点,对比分别采用微米和纳米阴极LSCF粉末进行等离子弧喷涂所制备的SOFC阴极的微观结构,从而为等离子弧喷涂制备SOFC阴极微观组织结构优化提供指导。结果表明,等离子弧喷涂微米粉末所制备SOFC阴极微观结构多为片层结构,部分区域出现柱状晶体结构,能够为SOFC电化学反应提供更多的孔隙结构;采用纳米粉末进行等离子弧喷涂所制备的SOFC阴极中纳米结构主要包括纳米粉体材料中保留下的纳米晶粒以及喷涂过程中急冷所形成的纳米晶粒。  相似文献   

7.
固体氧化物燃料电池(SOFC)是直接将化学能转化为电能的全固态装置,因其绿色、环保、高效等特点而备受广大科研人员的关注。近年来,电池工作温度的降低对SOFC电解质、连接体和电极材料均提出了新的更高的要求。目前主要通过制备电解质薄膜、连接体保护涂层和电极材料涂膜等来实现SOFC在中低温工作环境下良好的电化学性能。电泳沉积法(EPD)具有设备简单、易涂覆、操作方便等优点,因而其在上述材料制备方面得到了广泛应用。综述了近年来国内外EPD技术在SOFC各关键组件(电解质薄膜、合金连接体涂层、电极材料涂膜)中应用的研究进展,指出了今后的发展方向,这对提升电池性能和应用具有实际意义。  相似文献   

8.
彭如振  李荣兴  俞小花  侯彦青  谢刚 《表面技术》2016,45(4):116-123,161
铝电解工业越来越多的采用石墨阴极,石墨阴极具有良好的导电性能,但石墨不被铝液湿润且和铝液形成Al4 C3,导致铝电解槽运行寿命短.可湿润TiB2涂层阴极因节能和延长槽寿命能够给铝电解工业带来显著效益.等离子喷涂是一种高效、灵活的沉积涂层的方法 ,能够在形状复杂或大表面积的基体上沉积金属间化合物、陶瓷或复合材料,涂层厚度可从数微米到数毫米.等离子喷涂制备可湿润性TiB2涂层阴极是可行有效的方法 ,本文评述了等离子喷涂制备可湿润TiB2阴极涂层的研究进展,简述了等离子喷涂工艺受到的影响因素(包括粉末性质、基体表面形貌和焰流性质)和涂层与基体材料结合的机制(包括机械结合、冶金结合和物理结合),分析和讨论了TiB2粉末制备、基体预处理、等离子喷涂工艺参数、涂层显微结构和性能等.最后,指出了等离子喷涂制备可湿润性TiB2涂层阴极工艺将来研究需要解决的几个关键问题.  相似文献   

9.
聚醚醚酮材料(PEEK)具有良好的生物相容性、化学稳定性、X射线可穿透性及优异的力学性能,广泛用于创伤、脊柱和关节等生物医疗领域。然而,PEEK属于生物惰性材料,其骨整合性不足,这在一定程度上限制了该材料在骨修复与替换等领域的发展和应用。等离子喷涂技术由于工艺简单、经济,喷涂涂层的黏结强度高等特点,是解决聚醚醚酮材料骨整合能力不足的重要表面涂层改性技术。首先,简述了等离子喷涂工艺的涂层沉积机理,并分别对等离子喷涂钛以及羟基磷灰石两种常用涂层进行了介绍;其次,从不同喷涂工艺以及喷涂参数对涂层的影响出发,详细介绍了近几年对PEEK基等离子喷涂涂层的结合强度等机械性能的最新研究进展,并对等离子喷涂过程对PEEK基体的机械强度、疲劳强度、热性能和化学降解等初始性能影响进行了总结与评价,详细介绍了PEEK基等离子喷涂涂层体内外生物性能的最新研究进展;最后,展望了等离子喷涂改性PEEK基材料的临床应用前景,以期为未来设计新型PEEK基生物材料提供理论指导。  相似文献   

10.
目的提高涂层的结合强度和改善微观组织结构。方法选取WC-10Co4Cr喷涂材料,分别通过激光等离子复合热源喷涂工艺以及等离子喷涂工艺制备涂层,对涂层组织与基本性能进行检测,对两种不同喷涂工艺的沉积机理作对比分析研究。研究复合热源喷涂涂层微观组织结构以及涂层与基体间结合方式较等离子喷涂涂层的变化。利用高速摄像仪对激光等离子复合热源喷涂以及等离子喷涂的工艺过程进行跟踪监测和分析,研究复合热源沉积过程中,基体表面微熔池的形成及粉末粒子在不同沉积工艺过程中熔融状态的对比,分析等离子喷涂涂层和复合热源喷涂涂层的沉积机理。结果等离子喷涂WC-10Co4Cr涂层以机械结合方式为主,涂层结合强度为39.5 MPa,孔隙率为1.7%,而激光等离子复合热源喷涂WC-10Co4Cr涂层实现了冶金结合,其结合强度提升到91 MPa,孔隙率降低到0.86%。结论激光等离子复合热源喷涂工艺可以有效提升涂层的结合力,改善涂层组织致密性,更有利于涂层的耐磨耐腐蚀性能。  相似文献   

11.
In this paper, two plasma spraying technologies: solution plasma spraying (SolPS) and suspension plasma spraying (SPS) were used to produce nano-structured solid oxide fuel cells (SOFCs) electrolytes. Both plasma spraying processes were optimized in order to achieve the thin gas-tight electrolytes. The comparison of the two plasma spraying processes is based on electrolyte phase, microstructure, morphology, as well as on plasma deposition rate. The results show that nano-structured thin electrolytes (~5 μm thick) have been successfully SPS deposited on porous anodes with a high deposition rate. Compared to the electrolytes produced by SolPS, the SPS-deposited electrolyte layer is much denser. During the SPS process, fine droplets of 0.5-1 μm in diameter impact on the surface of the coating and penetrate into the pores of the anode. As the stresses are reduced on the resulting 0.5-2 μm splats, there is no apparent microcracks network on the splats, this resulting in highly gas-tight coatings. It is demonstrated that the SPS process is beneficial for the improvement of the performance of the films to be used as SOFC electrolytes.  相似文献   

12.
等离子喷涂-物理气相沉积(PS-PVD)是基于低压等离子喷涂发展起来的一种新型多功能薄膜及涂层制备技术。由于其独特的等离子射流特征,可实现气液固多相涂层沉积,获得非视线沉积。文中首先介绍了国内外PS-PVD技术等离子体数值模拟和在线检测技术的研究现状,其次讨论了PS-PVD羽-柱状结构热障涂层的形成机制及与传统热障涂层在热导率、抗冲蚀等性能方面的差异,阐述了PS-PVD技术制备环境障涂层的研究进展,最后对PS-PVD技术沉积高温防护涂层的优势和存在的问题进行了总结。  相似文献   

13.
Yttria doped zirconia has been widely used as electrolyte materials for solid oxide fuel cells (SOFC). Plasma spraying is a cost-effective process to deposit YSZ electrolyte. In this study, the 8 mol% Y2O3 stabilized ZrO2 (YSZ) layer was deposited by low pressure plasma spraying (LPPS) and atmospheric plasma spraying (APS) with fused-crushed and agglomerated powders to examine the effect of spray method and particle size on the electrical conductivity and gas permeability of YSZ coating. The microstructure of YSZ coating was characterized by scanning electron microscopy and x-ray diffraction analysis. The results showed that the gas permeability was significantly influenced by powder structure. The gas permeability of YSZ coating deposited by fused-crushed powder is one order lower in magnitude than that by agglomerated powder. Moreover, the gas permeability of YSZ deposited by LPPS is lower than that of APS YSZ. The electrical conductivity of the deposits through thickness direction was measured by potentiostat/galvanostat based on three-electrode assembly approach. The electrical conductivity of YSZ coating deposited by low pressure plasma spraying with fused-crushed powder of small particle size was 0.043 S cm−1 at 100 °C, which is about 20% higher than that of atmospheric plasma spraying YSZ with the same powder. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

14.
Solid oxide fuel cells (SOFCs) feature the highest energy conversion efficiency of any type of fuel cell yet developed. This article describes SOFC production by means of plasma spraying and presents the resulting SOFC performance. The application of plasma spraying to tubular SOFC production has realized good performance on the order of 40 W or greater in terms of electricity generation per cell stack under standard conditions of 200 mA/cm2.  相似文献   

15.
Metal-supported solid oxide fuel cells (SOFCs) composed of a Ce0.8Sm0.2O2?δ (SDC) electrolyte layer and Ni-Ce0.8Sm0.2O2?δ (Ni-SDC) cermet anode were fabricated by suspension thermal spraying on Hastelloy × substrates. The cathode, a Sm0.5Sr0.5CoO3 (SSCo)-SDC composite, was screen-printed and fired in situ. The anode was produced by suspension plasma spraying (SPS) using an axial injection plasma torch. The SDC electrolyte was produced by high-velocity oxy-fuel (HVOF) spraying of liquid suspension feedstock, using propylene fuel (DJ-2700). The emerging technology of HVOF suspension spraying was explored here to produce thin and low-porosity electrolytes in an effort to develop a cost-effective and scalable fabrication technique for high-performance, metal-supported SOFCs. In-flight particle temperature and velocity were measured for a number of different gun operating conditions and standoff distances and related to the resulting microstructures. At optimized conditions, this approach was found to limit material decomposition, enhance deposition efficiency, and reduce defect density in the resulting coating, as compared to previous results reported with SPS. Produced button cells showed highly promising performance with a maximum power density (MPD) of 0.5 W cm?2 at 600 °C and above 0.9 W cm?2 at 700 °C, with humidified hydrogen as fuel and air as oxidant. The potential of this deposition technique to scale-up the substrate size to 50 × 50 mm was demonstrated.  相似文献   

16.
随着雷达探测技术的发展,对装备的隐身性能也提出越来越严苛的要求,隐身技术可显著提高军事装备及军人的生存能力,提升战斗效率,取得更大的战场控制权。传统吸波涂层的制备方法工艺复杂且效率低下,作为一种热喷涂技术,由于等离子喷涂具有工艺简单、适用范围广、可操控性和可调控性高等优点,在制备吸波涂层中得到广泛应用。材料表面状态对其性能有着重要的影响,等离子渗碳同样作为一种表面处理工艺,对提高材料表面强度、耐磨性等具有重要作用。介绍了等离子喷涂的基本原理以及送粉速率、输出功率、喷涂距离、喷涂速度等涂层制备基本工艺参数对涂层的影响。研究表明,送粉速率相同时,喷涂功率过大或过小均会导致涂层质量下降;喷涂距离过小会导致涂层与基体的结合力降低,而距离过大又会降低喷涂效率和涂层密度,合理调控等离子喷涂的工艺参数对涂层质量的好坏有着直接且重要的影响。总结了近年来等离子喷涂制备吸波涂层方面的研究成果,介绍了传统渗碳热处理技术与新型渗碳热处理技术的发展,概述了等离子渗碳的发展和现状,可知加工时间及加热温度对渗碳层的性能产生了较大影响。对以上两种表面改性技术未来的研究发展进行了展望, 为航空航天、军事装备等涉及关键零部件表面改性方面提供一定的参考价值。  相似文献   

17.
Ni-Al2O3 cermet supported tubular SOFC was fabricated by thermal spraying. Flame-sprayed Al2O3-Ni cermet coating plays dual roles of a support tube and an anode current collector. 4.5mol.% yttria-stabilized zirconia (YSZ) and 10mol.% scandia-stabilized zirconia (ScSZ) coatings were deposited by atmospheric plasma spraying (APS) as the electrolyte in present study. The electrical conductivity of electrolyte was measured using DC method. The post treatment was employed using nitrate solution infiltration to densify APS electrolyte layer for improvement of gas permeability. The electrical conductivity of electrolyte and the performance of single cell were investigated to optimize SOFC performance. The electrical conductivity of the as-sprayed YSZ and ScSZ coating is about 0.03 and 0.07 S·cm-1 at 1000 ℃, respectively. The ohmic polarization significantly influences the performance of SOFC. The maximum output power density at 1000 ℃ increases from 0.47 to 0.76 W·cm-2 as the YSZ electrolyte thickness reduces from 100 μm to 40 μm. Using APS ScSZ coating of about 40 μm as the electrolyte, the test cell presents a maximum power output density of over 0.89 W·m-2 at 1000 ℃.  相似文献   

18.
Plasma-sprayed yttria-stabilized zirconia (YSZ) can be potentially employed as electrolyte layers in solid oxide fuel cells (SOFCs). The formation of a structured electrolyte surface characterized by convex micro deposits generated by only partially molten particles at spraying will increase the specific surface area and subsequently improve the output performance of SOFCs. However, using completely molten YSZ particles during plasma spraying leads to the formation of locally flat surface. In this study, flame spraying was employed to deposit YSZ particles on YSZ substrate using surface-melted particles. The deposition was carried out at different spray distances on YSZ substrate preheated to 650 °C. The surface and cross-section morphology of YSZ particles were characterized by SEM. The electrochemical behavior of single cell with the structured cathode was characterized by the electrochemical impedance spectroscopy. The results show that spray distance exhibits significant influence on the morphology of deposited YSZ particles. The cathode polarization of a structured cathode was decreased by about 30-43% compared to a flat cathode at different temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号